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Abstract 
A relatively new aspect to small area estimation with area level models involves modeling 
direct survey variances for small areas to improve them. Here, as one aspect of this, we 
consider the distribution of some survey variance estimators – linearization, Fay’s 
successive difference replication variance estimator, the jackknife, and the random group. 
We use simulations to examine whether the variance estimators might be assumed to 
approximately follow a scaled chi-squared distribution, and if so, with what value of the 
degrees of freedom? We do this for variances of estimated proportions from simple random 
samples of various sizes, with data generated from various distributions (Poisson, and 
Bernoulli), and with an artificial population constructed from American Community Survey 
data. This builds on previous work where we considered Fay’s successive difference 
replication variance estimator for means computed from simple random samples. 
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1. Introduction 

 
Small area estimation with area level models requires variance estimates of the sampling 
errors in the direct survey point estimates being modeled. Direct sampling variance 
estimates for small areas are likely to be unstable due to the small sample sizes, which 
suggest modeling the variance estimates to improve them. Statistical models to improve 
sampling variance estimates have been investigated by Otto and Bell (1995); Huff, Eltinge, 
and Gershunskaya (2002); Cho et al. (2002); Eltinge, Cho, and Hinrichs (2002); 
Gershunskaya and Lahiri (2005); Maples, Bell, and Huang (2009); and Maples (2010). 
Most of these papers assumed the direct sampling variance estimates were unbiased and 
followed scaled chi-squared distributions with known or estimated degrees of freedom. 
Huff, Eltinge, and Gershunskaya (2002) also considered a lognormal distribution, and 
Gershunskaya and Lahiri (2005) modeled log variance estimates focusing on the first two 
moments without explicitly specifying a distribution. Also, Otto and Bell (1995) and 
Eltinge, Cho, and Hinrichs (2002) modeled sampling covariance matrices, and so used the 
Wishart distribution, the multivariate generalization of the chi-square. Other papers that 
developed models assuming a chi-squared distribution for sampling variance estimates, 
though not with the explicit aim of improving the variance estimates, include Arora and 
Lahiri (1997) and You and Chapman (2006). 



 

    

The chi-squared (or Wishart) assumption is particularly important to the models of Otto and 
Bell (1995); Maples, Bell, and Huang (2009); and Maples (2010). Their models 
incorporated random small area effects for the variances, assumed distributed as inverse 
Gamma, and these distributional assumptions lead to an empirical Bayes smoothing of the 
direct variance estimates. The resulting shrinkage estimates are weighted averages of the 
direct variance estimates and fitted generalized variance function (GVF) values, with the 
weights depending on the degrees of freedom of the chi-squared distribution and the 
inverse Gamma parameter that determines the precision of the random variance effects. 
(Gershunskaya and Lahiri (2005) obtained an empirical Bayes smoothing of log variance 
estimates without distributional assumptions, which required direct estimation of the 
variances of the log variance estimates.) 
 
The importance of the chi-squared distributional assumption to sampling variance modeling 
naturally leads to the questions of (i) under what circumstances does the chi-squared 
distribution provide a reasonable approximation, and (ii) when it does, what are the degrees 
of freedom, and how do they vary with sample size and other characteristics of the survey? 
Huang and Bell (2009) used simulations to address these questions in a particular case, 
namely, the application of Fay’s successive difference replication variance estimator (Fay 
and Train 1995) to estimating variances of means of simple random samples. There we 
used simulations to examine the distributions of the variance estimates of means from 
simple random samples of various sizes from various distributions (normal, Poisson, and 
Bernoulli). In this paper, we extend this research to examine the distributions of several 
different variance estimators applied to estimates of ratios (proportions). The survey 
variance estimators examined here are the Taylor series linearization approach, Fay’s 
successive difference replication variance estimator, the jackknife variance estimator, and 
the random group variance estimator (using 10 groups).   
 
Section 2 of this paper reviews the four variance estimators of proportions used in the 
simulation study. Section 3 presents results obtained with simple random sampling from 
populations simulated using Bernoulli and Poisson distributions, and from an artificial 
population constructed by pooling 2005 American Community Survey (ACS) data over 
several counties from the state of Maryland. We examine bias of the variance estimators, 
how well their distribution is approximated by a chi-squared distribution, and the degrees 
of freedom of the chi-squared approximation. Results are obtained for a range of sample 
sizes from n = 2 to n = 760. Section 4 offers some conclusions.  
 
 

2. Variance Estimators of Proportions under Simple Random Sampling 
 
We assume a finite population of size N units. The population parameter  to be estimated 
is a proportion expressed as the ratio of two population totals Y and X: 
 

 

 
The sample estimate of θ from a simple random sample of size n is  , 
where, from now on, we let i = 1,…, n denote the units in the sample. In our simulations,  



 

    

and  will be either indicator or count variables for unit i. In particular, with the ACS data, 
 is the number of individuals who are children of school age (5-17) in household i, and  

is the number of individuals being both of school age and in poverty in household i. Thus, 
in this application, θ becomes the population proportion of school-age children in poverty 
(the 5-17 poverty ratio), and  the sample based estimate of the 5-17 poverty ratio. 
 
The four variance estimates we consider, as applied to estimate the variance of a 
proportion, are as follows. We let f = n/N denote the sampling fraction. 
 

1) Taylor series linearization (Cochran (1977, pp. 31-32 and p. 155), compare to 
Wolter (1985, p. 236)): 

 

 
2) Fay’s successive difference replication variance estimator (Fay and Train 1995): 

 

 

 
where R, the number of replicates, is a multiple of 4, and 

        
 
        
 
       
 
In the above expressions,  is the survey weight for sampled unit . For 
simple random sampling as considered here, . Also,  is an R×R 
Hadamard matrix (Wolter 1985, pp. 320-352), which has elements , and 
has the property that . In the ACS, the number of replicates used is 

, and this is the value of R we shall use here. Note above that row 1 of the 
matrix A (which is all ones) is not used. In application to ACS, the 41st row is also 
not used, and we shall proceed this way here as well. For sample sizes n > R – 2, 
we must re-use rows of A in defining the fir for i > R – 2, a point discussed by 
Huang and Bell (2009). 

 
3) The jackknife variance estimator (Wolter 1985, pp. 172-173): 

  

 

 
where the sample has been divided into k groups each of size m, with n = mk, and 
the “pseudo-value,” , is defined as  



 

    

 
 

where  is the estimated ratio obtained by omitting the αth group from the 
sample, and . (Wolter also mentions a more conservative version 
of  obtained by replacing  by the full sample estimate .) We shall use the 
“delete one” version of the jackknife, for which m = 1 and k = n. We also use the 
following modification to  suggested by Wolter (1985, p. 173) 

 
 

 
Wolter suggested this modification for cases where the sampling fraction f is not 
negligible, as occurs for the largest sample sizes we consider. 

 
4) The random group variance estimator (Wolter 1985, pp. 23–33): 

 

 

 
where the sample is divided into k groups each of size m,  is the estimate of θ 
formed from the data in group j, and . The form of  is 
obviously similar to that of , the difference being that for  the groups from 
which  are computed are disjoint. (As with , there is a more conservative 
version of  which replaces  with the full sample estimate .) Also, as with , 
we use the following modification of : 

 
 

 
In the simulation study we use random groups of size 10. To avoid complications, 
we compute  only for sample sizes n which are integer multiples of 10. 

 
Previous study of sampling variance estimators such as the above has focused mostly on 
their bias, and sometimes their variance or mean squared error, rather than on their 
distribution. Regarding the bias of , Cochran (1977, p. 162) states that “With small 
samples, say n < 30 and  large, it has long been suspected that the 
large-sample formulas given for the variance of a ratio and its estimate are underestimates.” 
Regarding , Cochran (1977, p. 179) states that the jackknife variance estimate of a ratio 
becomes unbiased either for fixed k or for k = n as n becomes large. Wolter (1985, pp. 156-
160) noted that, “The jackknife variance estimator was correct asymptotically. In finite 
samples, however, it tends to incur an upward bias of order 1/k2. But for linear functionals, 
the jackknife variance estimator is unbiased.” We will see both these properties confirmed 
later in the simulation results. 
 
 



 

    

3. Simulation Study of Variance Estimators of Estimated Proportions from 
Various Populations: Bernoulli, Poisson, ACS Data 

           
To study the properties of the four variance estimators presented in Section 2, we created 
several artificial populations from which we could repeatedly draw samples. The 
populations included simulated data with N = 10,000 observations from Bernoulli and 
(conditional) Poisson distributions. We also constructed a population by pooling ACS data 
from several counties in Maryland. From each of these populations we drew a large number 
(10,000) of simple random samples without replacement (srs wor) for each of a set of 
sample sizes n, computed the four variance estimates of proportions from each sample, and 
examined properties of the variance estimators for a given sample size over the simulations. 
 
We restricted our analyses to simulated samples for which the denominator of the estimated 
proportion was positive. The various sample sizes n used in the simulations varied for the 
four variance estimators. For  and , we used 56 sample sizes ranging from n = 2 to n = 
760. For , we used 32 sample sizes ranging from n = 2 to n = 610. For , we used 27 
sample sizes ranging from n = 2 to n = 610 in multiples of 10, so we would have equal 
numbers of sampled units in each of the 10 random groups. 
 
Let  denote any of the four variance estimators. We focus our analysis of the simulation 
results on the following three properties of the variance estimators, computed as summary 
statistics of  across the simulations for each sample size used.  
 

1) Percent relative bias of , defined as 
 

 

 

where the true variance, , is estimated by , 

 is the estimated proportion from simulated sample ℓ,  is the mean across the 
simulations of the ,  is estimated by  where  is the  
variance estimate from simulated sample ℓ, and K is the number of simulated 
samples drawn for which  (the denominator of  ). 
 

2) The “degrees of freedom,” d, of , is approximated by the Satterthwaite 
approximation (Ames and Webster 1991) via 

 

 

 
where , the relative variance of , is estimated by 

, where  is the variance of the individual 
sample variance estimates  over the simulations. If the distribution of  is 
actually proportional to a chi-squared distribution, then d as given above is indeed 



 

    

its degrees of freedom. When  is not exactly chi-squared, then d as given above 
can be used as the degrees of freedom for a chi-squared approximation. Even if this 
approximation is not good, d can still be thought of as a measure of precision of  
(given its connection to  and its square root, the coefficient of variation 
of .) 

 
3) To measure how closely the distribution of  matches a  distribution, 

we use an unnormalized version of the Komogorov-Smirnov (K-S) statistic (Rao 
1973, p. 421): 

 
 

where  is the empirical cumulative distribution function (c.d.f) of  
over the simulations, and  is the corresponding c.d.f. of the  distribution. 
We use K-S merely to get an approximate measure of the difference between the 
true distribution (approximated by  from the large number of simulations) and 
the approximating  distribution. We use .10 as a rough criterion value for K-S to 
indicate when the  approximation seems reasonable. If K-S is substantially less 
than .10 we would be very satisfied with the  approximation. When K-S is 
substantially more than .10 we would regard the  approximation as inadequate. 
Values of K-S near .10 are marginal.  

 
 
3.1. Simulation results from two Bernoulli populations 
 
We simulated an artificial population of size N = 10,000 from independent Bernoulli 
distributions by defining the variables  xi , zi  for i = 1,…, N  as follows: 

                                        

 

                                        

 
We use the values p1 = 0.3 and p2 = 0.08, 0.25. Letting yi = xi × zi, the finite population 
proportion θ will be approximately equal to p2. We shall thus identify the two cases as θ = 
0.08 and θ = 0.25 (which is at least approximately true). 
 
We summarize the simulation results by plotting the three evaluation statistics (K-S, 
degrees of freedom, and percent relative bias) versus the sample sizes in Figure 1. The three 
graphs in the left column in Figure 1 are for the population with θ = 0.08; the three graphs 
in the right column are for  θ = 0.25. Each graph contains four curves corresponding to the 
four variance estimates. The solid black line is for the Taylor series linearization variances 
( ), the red dashed line is for Fay’s replication variance ( ), the blue dot-dash line is for 
the jackknife variance ( ), and the green dashed line is for the random group variance 
( ). We summarize the results as follows: 
 
  

 
 



 

    

The K-S values (the top two graphs in Figure 1) show that the chi-squared distribution is 
not a very good approximation for “small” sample sizes for any of the variance estimators. 
For θ = 0.08, we need a sample size of about 100 or more for the K-S values to be less than 
or equal to 0.1 for all four variance estimators. For θ = 0.25, we need sample sizes of about 
40, 30, 50 and 90 for , , , and , respectively, for the K-S values to be less than or 
equal to 0.1. Apart from peaks in the K-S values in all cases for small sample sizes, the K-S 
values mostly decline with increasing n, showing that the chi-squared approximation 
improves as sample size increases. We also note some sections on both graphs where the 
random group variance has larger K-S values reflecting that, for these sample sizes, the chi-
squared approximation is not as good for  as it is for the other three variance estimators. 
The graphs also give some indication that, when n is large enough for the chi-squared 
approximation to be fairly good, it is slightly better for Fay’s variance estimator than for 
the other three. 
 
The graphs of the degrees of freedom (middle two graphs of Figure 1) show generally 
increasing values reflecting better relative precision (lower CVs) of the variance estimators 
as n increases. The lone exception is for  when θ = 0.25, for which the curve levels out 
at around 9 for n > 40. The leveling out at 9 is not surprising given that the form of  
suggests its maximum degrees of freedom for any sample size would be  (= 9 here). 
For θ = 0.08, the degrees of freedom for  does not seem to level out, but then it does not 
reach 9 even up to n = 760. For  and , the degrees of freedom are virtually identical, 
and they increase linearly with n, though at a slower rate for θ = 0.08 than for θ = 0.25. 
(Note that even for θ = 0.25, the degrees of freedom remain substantially less than , 
the value that would obtain for estimates of means with normal data.) 
 
For  the degrees of freedom are less than for  and , though more than for . Also, 
we see some curvature, with a suggestion that the degrees of freedom of  may be leveling 
out somewhere past n = 760. For comparison, Huang and Bell (2009) noted that, when 
using  to estimate variances of sample means with normal data, the degrees of freedom 
increased linearly (roughly according to 2n/3) up to about n = 78, then increased more 
slowly until reaching a maximum of about 74. This behavior was generally expected, given 
some analyses done of the form of , and since the use of 80 replicates suggested a 
maximum degrees of freedom of slightly less than 80 (given that we drop two rows of the 
Hadamard matrix). For estimating variances of means of nonnormal data, the degrees of 
freedom of  were lower. 
 
The graphs of the percent relative biases of the variance estimators (bottom two graphs in 
Figure 1) show large negative biases for the smallest sample sizes for all four variance 
estimators. For  and , the biases (which are similar) rapidly diminish as n increases, 
and appear effectively negligible for n > 50 or so. For , there are substantial positive 
biases for a narrow range of relatively small sample sizes, after which the biases decline to 
negligibility, which is perhaps reached slightly later than is the case for  and . For  
there is a similar pattern of large negative biases for the smallest n transitioning to 
substantial positive biases for moderate n, followed by a decline of the biases to 
negligibility as n further increases. This pattern is much delayed, however, compared to the 
similar pattern for . 



 

    

 
 
3.2 Simulation results from a (conditional) Poisson population 
 
The (conditional) Poisson population is generated from two variables zi and xi according to 
the following distributions (which are independent over i): 
 

                                        

 

                                        

 
For the simulations we set p = 0.08, , and . Letting yi = xi × zi, the finite 
population proportion θ will be 
 

 

 
This set-up was motivated as a plausible model for poverty data for which zi would be an 
indicator variable of poverty status for the ith household (with households here having 
poverty proportion p = 0.08), while xi represents the number of school-age children in the 
household (which follows a Poisson distribution whose mean is allowed to be different for 
households in poverty versus those not in poverty). While the resulting population 
proportion (poverty ratio) θ is similar to that for the first Bernoulli case, the distribution of 
the data here will be different. 
 
Results from the simulations using the above model are plotted in the left column of Figure 
2. (The right column of Figure 2 contains results obtained with the artificial population 
constructed from ACS data discussed in the next subsection.) The arrangement and labeling 
of the graphs is the same as that for Figure 1. We summarize the results shown in the left 
column of Figure 2, making comparisons to the left column graphs in Figure 1, as follows. 
 
The K-S graph from the Poisson population is very similar to the K-S graph from the 
Bernoulli(0.08) population shown in Figure 1. There are large K-S values for all four 
variance estimators for small sample sizes, but the K-S values decline with increasing n. 
The K-S values are less than 0.10 for n > 80 for all four variance estimators. This is 
somewhat better than for the Bernoulli(0.08) case of Figure 1, which might be explained by 
the slightly larger value of .088 for θ. 
 
The patterns of the degrees of freedom plots in the left columns of Figures 1 and 2 are very 
similar, with the relations between the four variance estimators the same in both plots. 
However, the degrees of freedom for the conditional Poisson case are much lower than for 
the Bernoulli(0.08) case, except that for  the degrees of freedom are about the same 
between the two populations. However,  has the lowest degrees of freedom by far in 
both populations. 
 



 

    

The bias plot in the left column of Figure 2 is very similar to that for the Bernoulli(0.08) 
case of Figure 1, except that the positive bias of , over the range of sample sizes where 
this is noticeable, is not quite as severe as in the Bernoulli(0.08) case. 
 
 
3.3 Simulation results for an artificial population constructed from ACS 2005 
poverty data 
 
We pooled ACS 2005 sample data from Maryland’s five largest county equivalents (Anne 
Arundel County, Baltimore County, Montgomery County, Prince George’s County, and 
Baltimore City) to define an artificial population. This involved data from 19,264 
households. The population proportion of interest (θ) is the poverty ratio of age 5-17 related 
children. We drew 10,000 simple random samples of households from this artificial 
population with the various sample sizes (number of households) mentioned in Section 2. 
For each household we have xi, the number of children in the household (related to the 
household head), and an indicator zi of whether the household was in poverty. Then, yi =  
xi × zi equals zero if the household is not in poverty, and equals xi if it is in poverty. We 
could thus calculate the population poverty ratio θ for this artificial population (which was 
0.085), and calculate the estimate  for each sample, as well as the four estimates of 

. The three evaluation statistics for this case are plotted in the second column of 
Figure 2, which can be compared to both the first column of Figure 2 and the second 
column of Figure 1. We summarize the results as follows. 
 
The K-S plot for this population is fairly similar to that for the conditional Poisson 
population, and hence also to that for the Bernoulli(0.08) population. One main difference 
is that the K-S statistics for the ACS data are a little worse, overall, than the others, in that 
they require somewhat larger sample sizes (about n ≥ 120) until they decline to .10 and 
lower. Additionally, the K-S values for  are more similar to those of the other variance 
estimators than was the case for the conditional Poisson and Bernoulli(0.08) populations. 
 
The degrees of freedom for , , and  increase more slowly with increasing n than is 
the case for the conditional Poisson population, which we noted showed slower increases in 
degrees of freedom than for the Bernoulli(0.08) population. With the ACS data, as with the 
other two populations, the degrees of freedom of  and  are quite similar, while they are 
lower for . (This difference is less, however, with the ACS data than it is with the other 
two populations.)  For , the rate of increase in the degrees of freedom is similar for all 
three of these populations, though its degrees of freedom are also easily the lowest among 
the four variance estimators for all three populations (never exceeding 6 with the ACS 
data). 
 
The pattern of the bias plots with the ACS data is broadly similar to that of the bias plots of 
the conditional Poisson and Bernoulli(0.08) populations, but with some differences worth 
noting. The most noticeable difference is that, with the ACS data, the negative bias of  
is more severe and persists to larger sample sizes, not approaching zero until near n = 200. 
Also, there is no “overshoot” in the bias of , that is, it does not increase into positive 
values for n > 200, but instead stays reasonably close to zero. The positive bias of , 



 

    

however, persists to larger sample sizes (about to n = 100) than was the case with the 
conditional Poisson and Bernoulli(0.08) populations. Finally, the negative biases of  and 

 diminish towards zero more slowly than was the case for the other two populations, with 
small negative biases persisting even for n > 200. 
 
 

4. Conclusions 
 

In general, for sample sizes n > 100, the simulation results are mostly supportive of using a 
scaled chi-squared approximation to the distributions of the four variance estimators of 
estimated proportions (with some cautions about extrapolating the conclusions very far 
outside the range of the simulations.) For sample sizes much smaller than 100, it appears 
that the chi-squared approximation may not be very good. The chi-squared approximation 
tended to fare better for larger values of the population proportion within the range 
considered here. Notice, though, that here we considered only values of the population 
proportion less than 0.5. For values greater than 0.5, the results might reverse and show 
poorer approximation by the chi-squared distribution as the proportion approaches 1.0. 
 
The degrees of freedom, d, differed among the four variance estimators and across the 
various populations considered. Thus, d generally increased with sample size n, but at 
different rates across the various populations and among the different variance estimators. 
For a fixed sample size and a given variance estimator, d tended to be larger for populations 
with a larger population proportion (though this could be reversed for population 
proportions exceeding 0.5). For the artificial populations considered here, the degrees of 
freedom of the linearization and jackknife variance estimators were close and increased the 
fastest with the sample size n. The degrees of freedom of Fay’s successive difference 
replicate variance estimator increased more slowly with n and always remained below the 
number of replicates (80) being used. The degrees of freedom of the random group variance 
estimator increased the slowest with n and did not exceed nine (the number of random 
groups used minus 1). 
 
Biases of three of the four variance estimates of ratios were generally small for sample size 
n > 100, the exception being the random group variance estimator, whose bias remained 
non-negligible for even larger values of n. For very small sample sizes, all four variance 
estimates have substantial negative bias. The bias patterns of the linearization variance 
estimator and Fay’s variance estimator were similar, while there are positive biases for the 
jackknife variance for small, but not the smallest, n. 
 
Obvious possibilities for future research would include extending the results to consider 
other variance estimators, other population distributions or other population parameters, 
and other sampling schemes. 
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Figure 1. The K−S, D.F.,and Bias of 4 Variance Estimates of Estimated Proportions−Bernoulli
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Figure 2. The K−S, D.F.,and Bias of 4 Variance Estimates of Estimated Proportions
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