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1 Introduction

This paper reports on the creation of a partially synthetic Census Bureau data
product called the SIPP Synthetic Beta (SSB). Our purpose is to inform users
of the SSB about how the �le was created and to provide an example of the
application of data synthesis methods to those doing research in this area. We
also hope to provide some guidance for other organizations which might be
interested in creating their own synthetic data products.
We begin by providing a brief overview of how the SSB is created. We then

turn to the details of our methodology, beginning with a short review of the
literature that supplies the theory for data synthesis as a means of protecting
con�dential data. We follow with a more detailed description of how we applied
this theory. We then explain how we tested the synthetic data for disclosure
risk and provide guidance to researchers on how to use the SSB. We provide
some short tests of the analytic validity of our latest release, SSB version 5.1,
and give some examples of early uses of the SSB. We �nish with a discussion
of the challenges of creating useful synthetic data and an outline of plans for
future development. Appendix A gives a short history of the creation of the
SSB and describes the evolution of this product across di¤erent versions.

�This report is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. Any views expressed on statistical, methodological, technical,
or operational issues are those of the authors and not necessarily those of the U.S. Census
Bureau, Cornell University, or any of the project sponsors.

yAbowd is the Edmund Ezra Day Professor of Economics at Cornell University,
Distinguished Senior Research Fellow at the U.S. Census Bureau, Research Associate
NBER, Research A¢ liate CREST/INSEE, and Research Fellow IZA. Benedetto and Stin-
son are economists at the U.S. Census Bureau. Contacts: john.abowd@cornell.edu,
gary.linus.benedetto@census.gov, martha.stinson@census.gov
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2 Overview of the Creation of the SSB

The purpose of the SSB is to provide data from the Survey of Income and Pro-
gram Participation data linked to administrative earnings and bene�ts to users
outside Census secure facilities. From the beginning of the project, two over-
arching requirements have guided the decisions about the type of �le to create.
First, the �le should contain micro-data in a format usable by researchers and
others familiar with the structure and content of the regular SIPP public use
�les. Second, the �le should stand alone and not be linkable to any of the
existing SIPP public use products previously published by the Census Bureau.
These two criteria led the Census Bureau to choose partially synthetic data as
the primary disclosure avoidance method. The main purpose of this paper is
to educate researchers about synthetic data, in particular how these data were
created and how they should be used.
As the �rst step in this process, the Census Bureau created a standardized

extract of variables from a set of SIPP panels and merged these extracts with
individual administrative earnings and bene�ts records1 . These extracts were
combined and named the SIPP Gold Standard File (GSF). This �le serves as the
basis for the creation of the SSB. It establishes the metadata for each variable,
determines the sample of people to be included, and serves as the source data
for the modeling required to create the synthetic data.
The next step in the process was to handle missing data in the Gold Standard

�le. We used multiple imputation to create four completed data �les that
contained imputations for all missing values in the Gold Standard2 . Finally,
again using multiple imputation techniques, we created 16 synthetic data �les
that replaced all original values with imputations. After the creation of the
synthetic data, we then tested for disclosure risk by attempting to link our
synthetic data back to the Gold Standard. Even using some inside knowledge
not available to a potential intruder, we were not able to reliably match synthetic
records to the correct Gold Standard records3 .
The SSB has been extensively tested for analytic validity over the years as

new versions have been released. Currently the Census Bureau o¤ers outside
researchers the option of having analyses done with the SSB validated using the
completed Gold Standard �les. The Census Bureau will release results from
analyses done on the con�dential data so that analysts can know what impact
synthesis had on the data relationships they estimated. Feedback from these
validation exercises, in turn, helps further the development of the synthesis

1Version 5.1 contains data from the 1990, 1991, 1992, 1993, 1996, 2001, and 2004 SIPP
panels and the SSA Detailed Earnings Record (DER), Summary Earnings Record (SER),
Master Bene�ciary Record (MBR), and Supplemental Security Record (SSR).

2We did not change item-missing imputations done by standard Census processing of SIPP
data. Rather we kept the original imputations and added imputations that handled miss-
ing data due to a household missing a wave of the survey and due to individuals missing
administrative data.

3The probability that the two records deemed "most similar" by our matching strategy
were in fact a true match was less than 2%. See Section 4 for full details on our disclosure
testing.
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process. For more information on using the SSB and doing validation work,
please visit www.census.gov/sipp/synth_data.html.

3 Methodology

3.1 Review of Literature on Multiple Imputation

Protecting the identity of individuals whose personal and �nancial character-
istics are released in a micro-data set has long been an important research in
statistics. Since its launch in 1984, the public-use SIPP has relied exclusively
on top-coding and cell suppression to handle disclosure issues. However the
addition of many administrative variables to create the SIPP Gold Standard
gave rise to the concern that these methods were no longer su¢ cient to protect
the identify of SIPP respondents. Hence new methods were sought from the
research literature and from the examples of other federal data sources. To
understand the approach we adopted, we begin by guiding the reader through
the development of multiple imputation theory and its subsequent application
to data protection methods which came to be called data synthesis.
Rubin �rst proposed multiple imputation as a way to handle missing data

problems. In his seminal book (Rubin 1982), he advocates applying any given
imputation method multiple times to create many replacement values for missing
data. This approach produces multiple copies of the data set, each copy having
its missing values replaced with one of the sets of imputed values. The need for
this arises from the fact that extra variability is introduced by the missing data.
This variability needs to be taken into account or else the con�dence intervals
generated for statistics produced using the data will be too small, i.e. parameters
will be determined to be signi�cant too often. By generating multiple data
sets or implicates, the user can run a standard analysis on each one and then
calculate the within-implicate variance (standard variance measure) and the
between-implicate variance (variance across the implicates). The total variance
formula, discussed in detail in Section 5, then has two components which take
account of the standard measure of variance and the variance introduced by the
imputation.
The idea that imputation of missing data and creation of synthetic data are

related comes from Rubin (1993) and Little (1993). Rubin�s original idea was
that multiple imputation could be used to �ll in survey responses for the entire
population of individuals from which the original survey sample had been drawn.
In essence, for individuals not sampled by the survey, the survey variables were
treated as missing and were multiply imputed. From this population with
complete data, new synthetic samples would be created by drawing individuals
from the population. The survey responses for these individuals could be
released because they were not actual responses but rather multiplely-imputed
responses. Little proposed imputation to replace original values as one of many
possible mechanisms of disclosure protection.
Rubin�s argument for using this method was that researchers using the data
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would not need special statistical software to analyze such data but rather could
use standard methods and then could combine results across implicates using
appropriate formulae. All the burden for modeling and creating the synthetic
data fell on the data producer, who Rubin felt was most likely to have the
necessary resources and expertise. At the same time no actual respondent-
reported data would be released so survey response would be helped. Data
intruders looking to identify individuals in public-use data products would shy
away from synthetic data.
Rubin�s original idea for data synthesis was very general and did not sug-

gest a speci�c imputation method. Early work using data sets with very small
numbers of variables, usually of the same kind, were modeled by specifying a dis-
tribution of the variables with missing data conditional on all the other observed
values and some unknown parameters, which had a speci�c prior distribution.
This model then produced a posterior predictive distribution from which draws
were taken to replace the missing values. However explicit multivariate condi-
tional models are di¢ cult to make when the data are complex with many types
of variables such as continuous, discrete, and categorical, and when restrictions
on one variable are implied by another variable. Raghunathan et al. (2001)
proposed a general purpose multivariate imputation procedure called sequential
regression multivariate imputation (SRMI) which factors the joint conditional
density into a series of conditional density functions where a single variable with
missing data was modeled as conditional on other variables with and without
missing data and a set of parameters. The imputation proceeds through all
the variables with missing data, and as values are imputed, they are included as
explanatory variables in the next round of imputation. The imputation process
is completed for a certain number of rounds in order to allow all the variables
to in�uence each other regardless of the order in which the data completion is
done.
From these original ideas, the idea of partially-synthetic data has been devel-

oped. Unlike fully synthetic data, original sample members remain in the �le.
However their responses are replaced by values which are multiply-imputed.
As described by Reiter and Raghunathan (2007), partially synthetic data sets
look like data sets that have missing values replaced by multiple imputation
methods but in fact the multiple imputation methods produce replacements for
self-reported data. One early application of partially-synthetic data to protect
con�dentiality was the Survey of Consumer Finances, described in Kennickell
(1997). Abowd and Woodcock (2001) synthesized an early prototype of linked
employee-employer data. Today the Census Bureau releases two other partially
synthetic data products in addition to the SSB. The �rst is the Longitudinal
Business Database (LBD) which is described in Kinny et al. (2011) and the
second is On The Map which is described in Machanavajjhala et al. (2008).
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3.2 Data Synthesis and Completion Methods

3.2.1 Summary of synthetic data production

We now provide speci�c details about the process used to create our synthetic
data product. The �rst step of the process was to multiply impute all missing
data. Data were missing for SIPP respondents either because they missed a
wave of the survey or lacked the necessary information to link to administrative
records. We kept hot-deck imputations done during regular SIPP processing to
complete item-missing values for household that responded in a given wave but
failed to answer some questions. We call this �rst step �completing the data,�
because the result is data that contain all the original values plus imputed values
when the original ones were missing.
In contrast to regular missing data, which we multiply impute, structurally

missing data occur when an item is missing due to the logical structure of
a set of variables in the survey or administrative record. For survey data,
structurally missing values occur when the skip logic of the survey dictates
that a question should not be asked because of the response given to a prior
question. Administrative record data have a similar, albeit implicit, structure.
Lack of participation in the formal labor market or SSA programs will produce
structural zeros for earnings and bene�ts respectively. Structurally missing
data were never completed (i.e., imputed) because they do not represent missing
information. We use the term �missing�to mean missing-to-be-completed and
will explicitly describe any other data that are missing as structurally missing.
In completing data, we followed Raghunathan et al. (2001) and implemented

an SRMI framework that estimated the joint conditional density as a series of
conditional density functions, thus allowing us to model each variable separately,
conditional on the previously modeled data. We chose from among three models
for each variable with missing data: linear regression, logistic regression, and
Bayesian Bootstrap. For administrative data, we imputed whether the person
had earnings and bene�ts at a particular point in time and then if yes, we
imputed the dollar amounts. Likewise for the SIPP variables, we preserved the
logical relationships amongst variables by imposing restrictions on down-stream
variables (called "child" variables) using values of up-stream variables (called
"parent variables"). We describe the types of models and the speci�cation of
logical relationships among variables in more detail in Section 3.2.2.
The actual SRMI process of completing data is iterative. The goal of the �rst

iteration is to �ll in all missing values with starting values. We cycle through
all the variables in the �le, estimating models using originally non-missing cases
for the dependent variable and a set of explanatory variables which contain no
missing data. After a variable has been modeled and its missing values replaced,
it becomes eligible to be an explanatory variable for the next modeled variable.
As we progress through the variable list and the data set is updated, there will
be fewer and fewer variables with missing values, and hence increasingly more
cases available for model estimation. The end product of this process is a data
set that contains completed administrative and SIPP variables.
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After producing an initial set of values for the missing data, we move to the
second iteration. As in the �rst iteration, only originally non-missing dependent
variables are used in model estimation. However in this iteration, we can choose
explanatory variables from all the variables in our list, not just those which had
previously been modeled. The �rst variable to be modeled uses explanatory
variables from the completed data that was the output of the �rst iteration.
The second variable to be modeled uses the most up-to-date values for variable
1, i.e., the values imputed in iteration 2, and the completed data from iteration
1 for every other variable. The sequential estimation progresses until the last
variable, which uses imputed values from iteration 2 for all explanatory variables.
In this manner, the modeling is always done with the most up-to-date imputed
values available, allowing the modeling to improve itself over iterations. At the
conclusion of this second step, another completed data set is generated which
has updated values for all variables. There is no exact number of iterations
dictated by SRMI theory. In creating SSB version 5.1, we did three iterations
of data completion.
We impute multiple times, meaning that we run multiple, parallel iterative

data completion processes. The data product that results is actually a set
of �les called the completed data implicates. Each implicate has an identical
structure (same number of observations, variables, etc.) and contains identical
data in cases where the information was originally non-missing. The separate
SRMI processes are necessary because of the inter-related nature of the variables.
Once a variable has been completed, its updated (i.e. imputed) value is used as
a right-hand-side variable in the imputation process for other variables. Thus,
in order to maintain internal consistency within an implicate �le, each implicate
must be generated separately. For version 5.1, we created four missing data
implicates.
Once the data are completed and contain no missing data except for struc-

turally missing items, the �nal step of synthesizing the data requires only one
�nal iteration. We synthesize in the same manner as the �rst missing data itera-
tion, namely, we build up the synthetic data as a series of conditional marginals,
using only previously synthesized variables as explanatory variables. The main
di¤erence between synthesis and data completion is that every individual has
all of his or her values imputed, variable by variable, conditional on the com-
pleted data. This means that for each variable, a model is estimated using
all cases from the completed data that are in universe, regardless of whether
they were originally non-missing or imputed in the data completion step. After
estimating the model, we impute a value for each variable based upon the most
up-to-date synthetic data. Hence while the synthetic variables are not used in
the model estimation, they are used to impute other synthetic values in order
to keep the synthetic data internally consistent.
Since there are multiple completed data implicates, there are multiple input

�les to the synthesizing process. For each completed data implicate, we run
multiple, parallel synthesis processes which produce multiple separate sets of
synthesized values. For version 5.1, we created four synthetic data implicates
per completed data implicate for a total of 16 synthetic implicates.
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3.2.2 Modeling details

In implementing an SRMI iteration, we made four decisions for each variable
that was completed/synthesized. First, we chose what type of model to use
(OLS, logistic, Bayesian bootstrap); second, we designated parent-child rela-
tionships among variables; third, we de�ned restrictions to be placed on the
values of variables when necessary; fourth, we chose a set of grouping and con-
ditioning variables to use in modeling. In this section we explain the three
types of models and describe the process for the last three steps. The SSB
version 5.1 code book lists speci�c modeling details for each variable.

Models of variables The �rst information the analyst must provide about a
variable to be completed and synthesized is the model type. We used three ma-
jor modeling techniques: normal linear regression (OLS), logistic, and Bayesian
bootstrap. The purpose of the modeling step is to estimate a posterior predic-
tive distribution (PPD) for each variable and then to take draws from this PPD
to replace either missing values or original data, depending on whether we are
completing missing data or synthesizing. The PPD is simply the probability
distribution of the data we are trying to produce, conditional on the data we
observe. More formally, the PPD for variable yk is de�ned as:

PPD = P (yk j Y m; X) =
Z
p(yk j Y m�k; X; �)p(� j Y m; X)d�

X = non-missing, non-modeled variables

Y m = completed data

We use linear regression models to estimate the PPD for continuous vari-
ables. In this case, the parameters, �, are assumed have normal/inverted gamma
distributions and the regression produces estimates of the mean and variance of
these distributions, giving us p(� j Y m; X). We then use standard techniques to
take a draw from the � distribution to produce a set of parameters (�0s and �2)
for predicting values. Using these parameters and the observed values of the
other data elements provides us with p(yk j Y m�k; X; �); which we also assume is
normal with mean �x and variance �2. A draw from this distribution is simply
a predicted value from the linear regression, given the set of �0s and �2 that we
drew earlier.
The basics of this method will seem familiar to most researchers. We es-

timate a relationship between the observed values of a dependent variable and
a set of independent variables also found in the data. This relationship is
characterized by a set of regression coe¢ cients and the standard error of the
equation and involves assumptions about the model form and the distribution
of the model parameters. We use these estimated parameters to predict a
value for individuals missing data or for all individuals in the case of synthetic
data. The key insight is that the regression parameters are themselves random
variables and as such must be sampled. This sampling of parameters repli-
cates the underlying uncertainty due to estimating our model on a sample of
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data instead of a universe. By taking multiple draws from the regression pa-
rameter distribution, we provide data that allows users to take account of this
uncertainty.
It is sometimes the case that the univariate distribution of the variable we

are trying to synthesize, yk; di¤ers greatly from conditional normality. This
situation will cause the distribution of the synthetic values to di¤er from that
of the con�dential values, an undesirable result. To handle these variables,
we transform the con�dential data so that they have an approximately normal
distribution, estimate the posterior predictive model on the transformed data,
and perform the inverse transformation on the imputed values. This process is
described in detail in Benedetto and Woodcock (2006).
For binary discrete variables, the PPD is based on the asymptotic posterior

distribution of the parameters of a logistic regression model. Otherwise the
methods are the same as in the linear regression models. Finally for Bayesian
bootstrap models, we de�ne the PPD in a non-parametric way. We begin by
selecting a set of n individuals who are eligible to be donors for either the missing
or synthetic data. In a regular bootstrap, the probability of selecting any given
individual to be a donor is 1

n and there is no uncertainty in what probability
is assigned to a given observation. In contrast, in a Bayesian bootstrap, the
probability of individual i being chosen as a donor is pi, which is modeled from
the sample data and is centered around 1

n . The set of probabilities, p1 to
pn is the non-parametric representation of the PPD. By not assigning equal
probabilities to all donors, the Bayesian bootstrap accounts for the fact that
the sample distribution may not be the same as the population distribution.
Performing the Bayesian bootstrap multiple times allows users to estimate the
uncertainty introduced by imputation and synthesis. See Rubin (1981) for more
details on this method.

Parent-child relationships and constrained variables Next the analyst
must provide information that appropriately accounts for explicit relationships
among the original variables that need to be preserved in the synthetic data.
We have developed two tools for handling these relationships.
Our �rst tool is to specify parent-child relationships. We de�ne parent vari-

ables as those that restrict which observations of another variable are present
and which observations are structurally missing. These parent-child relations
formalize the skip patterns in the SIPP survey instrument and the logical de-
pendencies in the administrative records. A parent variable determines the
universe of observations that are in scope to estimate the model for the associ-
ated child variable and to receive an imputed value following the estimation. If
the parent variable indicates that the child variable is structurally missing (out
of the universe) for an individual, then this observation will not be included in
the estimation nor will it receive an imputed value.
Our second tool for handling relationships among variables is to place re-

strictions or constraints on some variables. Constraints specify a minimum and
maximum value that restricts the range of draws from the posterior predictive
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distribution for a given variable. Constraints are speci�c to an individual and
we impose them by forcing the draw to be from the part of the PPD that satis�es
the constraints.

Grouping and conditioning variables Finally, for every variable that we
modeled, we chose both grouping variables and conditioning variables. Group-
ing variables de�ne the sets of observations within which regressions will be run
and conditioning, or explanatory, variables de�ne what goes on the right-hand
side of the model. All three of our model types use grouping variables but only
the parametric models use conditioning variables.
We chose grouping variables so that each group met a minimum size require-

ment and at the same time contained people who were as similar as possible.
Adding additional grouping variables is very costly in terms of computational
time so we sought to make a parsimonious but e¤ective list to use for group
strati�cation. Each unique group, de�ned by the values of all the variables
in the grouping list, has its own posterior predictive distribution. This is the
equivalent of fully interacting every grouping variable with every conditioning
variable. Conditioning variables are used so that within homogeneous groups,
important relationships between the dependent variables and other variables on
the �le can be preserved.
Problems develop when the grouping variables produce sub-groups that are

too small to estimate a statistically reliable PPD. We use the rule that the
number of observations in any sub-group must be at least 15 times the number
of conditioning variables or 1,000, whichever is greater. To implement this rule,
we �rst created multiple lists of grouping variables and conditioning variables
for each variable. Each set of grouping variables is de�ned by progressively
fewer variables, with the intent of making larger groups of observations. As
variables are dropped, they are added to the list of conditioning variables, which
hence becomes progressively longer.
We begin with the complete set of grouping variables, form all possible sub-

groups, and then check their sample sizes. Sub-groups that are too small are
collapsed and then split into a new set of sub-groups, using the next shortest
list of grouping variables. This process continues until all the sub-groups meet
the minimum observation requirements or until the list of grouping variables
provided by the analyst is exhausted, at which point all groups that are still too
small are combined.
As with grouping variables, the initial selection of conditioning variables is

dependent on the selection made by the analyst. However each time a set of
candidate conditioning variables is included in the model for a particular depen-
dent variable in a particular sub-group, a Bayesian variable selection process is
used to reduce the variable list by eliminating variables that are deemed to have
weak relationships with the dependent variable, as measured by the Bayes Infor-
mation Criterion (BIC). This statistic estimates an odds ratio of the model with
and without each explanatory variable and, based on critical values we choose,
decides whether a particular explanatory variable belongs in the model.
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4 Analysis of Disclosure Risk

4.1 General Methods

The link between administrative earnings, bene�ts, and SIPP data adds a sig-
ni�cant amount of information to an already very detailed survey and warrants
careful investigation of possible disclosure risks beyond those originally man-
aged as part of the regular SIPP public use �le disclosure avoidance process.
The creation of synthetic data is meant to mitigate those risks by preventing a
link between these new public use �les and the original SIPP public use �les,
which are already in the public domain4 .
We assess the risk of disclosure using the principle that a potential intruder

would �rst try to re-identify the source record for a given synthetic data observa-
tion in the existing SIPP public use �les. In order to test the e¤ectiveness of the
data synthesis in controlling disclosure risk, we used minimum distance match-
ing to attempt to link one SSB implicate to the Gold Standard File5 . Since the
Gold Standard is built from the original SIPP public use �les and our methods
of creating this �le are public, the Gold Standard variables are the equivalent of
the best available information for an intruder attempting to re-identify a record
in the synthetic data. Successful matches between the Gold Standard and the
synthetic data represent potential disclosure risks. We describe our minimum
distance methods in more detail in Section 4.2.
We assume that an intruder attempting to link SSB records to SIPP re-

spondents would block (i.e. stratify) on our two pieces of unsynthesized SIPP
information, gender and the spouse-link, and then attempt to link records within
these blocks. Hence in our re-identi�cation exercise, we also block on gender.
To handle the marital-link, we create a wide-version of both the Gold Standard
File and the synthetic data where a single record contains all the data for both
members of a linked marriage. If there is no linked marriage, the record only
contains data for the single individual. We then match at the couple-level in
order to allow the combined synthetic data for both husbands and wives to be
used in �nding a matching pair in the original data6 .
Individuals from the GSF were only kept in the SSB if they were at least 15

years old at the beginning of their SIPP panel. We implemented this sample
restriction in the synthetic data by �rst synthesizing all the records from the
underlying GSF, and then using both the synthetic birthdate and the synthetic
panel to determine who met the age criteria. The synthetic �les after the sample
restriction di¤ered in size and were smaller than the GSF. Thus an intruder
cannot tell from looking at the public use SIPP which respondents were dropped
and which were kept. Together, the age cuto¤ and synthetic birthdates add an
extra layer of uncertainty to any matching exercise performed by an intruder.

4We also note that SSB version 5.1 will not be linkable to SSB version 4.0 or 5.0.
5At this point we have only matched the �rst SSB implicate to the GSF. We would expect

that the matching results for implicates 2-16 to be very similar to those for implicate 1.
6Co-habitating same-sex partners were not allowed to declare themselves married in the

SIPP panels contained in SSB v5.1. Hence a married couple always has both a male and
female.

10



In our matching exercise, however, we wished to be very conservative, and so we
used the full set of observations in the �rst synthetic implicate (prior to the age
cuto¤) in all of our re-identi�cation exercises. Hence our synthetic implicate
�le has the same sample size as the Gold Standard, and we know that a �true
match" between the two �les exists.
Importantly, simply linking a record in the SSB to a matching record in

the public-use SIPP would be insu¢ cient for an intruder to identify a SIPP
respondent. Re-identi�cation would also require the intruder to make a second
link to some additional source that contained personal identi�able information
such as names, addresses, telephone numbers, etc. Hence, the results from our
matching process are a very conservative estimation of re-identi�cation risk.

4.2 Distance Matching

Distance-based record linking is a common approach to estimating the risk of re-
identi�cation in micro data. For example, Domingo-Ferrer, Abowd, and Torra
(2006) use distance-based methods to re-identify records on two synthetic micro-
data samples. They �nd that distance-based metrics perform similarly to (if
not better than) more commonly used probabilistic methods. Domingo-Ferrer,
Torra, Mateo-Sanz, and Sebe (2006) conduct similar comparisons of distance-
based and probabilistic record linking methods. This body of work suggests
that distance-based methods provide reliable measures of re-identi�cation risk.
The basic re-identi�cation method we employed was to calculate the distance

between a given record in the Gold Standard and every record in the synthetic
implicate. The j closest records were then declared potential candidates for a
match to the source record. In our analysis we considered j = 3. We began by
sub-dividing the data in two stages. First, we split both the Gold Standard and
the �rst synthetic implicate into groups based on the unsynthesized variables.
In this case, marital status(married/single) and gender were the only two un-
synthesized variables. We next split each blocking group into smaller segments
of approximately 10,000 observations in order to decrease the processing time,
which is quadratic in the size of the largest �les compared. We performed the
segment split on both the Gold Standard and synthetic �le so that the correct
match in the Gold Standard was always in the same block and segment of the
synthetic data used for comparison. In other words, we forced the segmenta-
tion of the �les to guarantee that the correct match could always be found in
the block/segments being compared. The segmentation of the blocks used our
prior knowledge of which records were actual matches and hence our match-
ing results are conservative�overestimates as compared to a distance record link
that could not segment the comparison �les because the intruder did not have
access to person identi�ers that linked between the synthetic implicate and the
Gold Standard. After splitting the data into blocking groups and segments, we
then calculated the distance between a given Gold Standard record and every
record in the synthetic �le in its corresponding blocking group and segment us-
ing the set of matching variables listed in Table 1. For couples, we used the
small set of variables that were common to both partners and then used both
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the husband and wife values for all other variables. For singles, we used the
person�s own values for every matching variable. The list includes the SIPP
point-in-time variables and summary measures from the SIPP and SSA/IRS
time series variables. The three closest records were then declared possible
matches.
We used four distance metrics. Each metric is a special case of either Ma-

halanobis or Euclidian distance. The concept of Euclidean distance is fairly
intuitive. Two variables measuring the same thing in di¤erent sources are com-
pared and we determine how "close" they are. This measure is combined across
many variables to create an overall distance measure. Mahalanobis distance is
simply a di¤erent weighting scheme for combining the distance between many
variables, using as weights the inverse of the variance/covariance matrix of the
matching variables from both sources.
In order to formally de�ne these distance metrics, we �rst de�ne some nota-

tion. Let A and B represent the two data sets being matched. For our purposes,
conceptualize the block and segment of the Gold Standard as the A �le and the
block and segment of the synthetic implicate as the B �le. Denote � as the
vector of matching variables from an observation in the A �le and � as the
analogue for the B �le. Given this notation we de�ne the distance between a
given vector � in the A �le and a given vector � in the B �le as follows:

d(�; �) = (�� �)0[V ar(A) + V ar(B)� 2Cov(A;B)]�1(�� �)

We consider four speci�c cases of the general distance. In the �rst case we
assume that the intruder can properly calculate the Cov(A;B). We denote this
distance MAHA1; and note that it is a true Mahalanobis distance; hence we
expect that this distance measure will give us the highest match rates since it
uses all of the available information, including the correct covariance structure
of the errors in synthesizing all matching variables. In the second case, we
assume that the Cov(A;B) = 0. This is equivalent to assuming that we do not
know how to link the observations across the A and B �les and cannot compute
Cov(A;B). A real intruder would not have access to Cov(A;B). We denote
the second distance MAHA2, and note that it is a �feasible� Mahalanobis
distance. In the third case, we assume [V ar(A) + V ar(B)� 2Cov(A;B)] = I,
where I is the identity matrix. We denote the third measure as EUCL1; which
is a Euclidian distance with unstandardized inputs. For the fourth measure,
we transform all of the matching variables in the A and B �les to N(0; 1)
variables. Call the transformed �les ~A and ~B. We then calculate the distance
using [V ar( ~A) + V ar( ~B) � 2Cov( ~A; ~B)] = I. We denote this fourth metric
EUCL2, and note that it is a standardized Euclidian distance.
For speci�c results on minimum distance matching for version 5.1, please see

DRBMemoSSBv5_1.pdf posted at www.census.gov/sipp/synth_data.html.
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5 Using the SSB

Many potential users may be concerned about how to begin using synthetic data
and multiple implicate �les. In this section we give some advice for using these
data sets to perform analyses and provide the exact formulae for combining
results from multiple implicates.
We suggest that users begin with one synthetic implicate and write code to

prepare variables and verify the speci�cation of statistical models for this single
data set. Since all the synthetic implicates are identical in terms of �le structure,
number of records, variables names, etc., any code that works on one implicate
also works on the remaining implicates. Users can debug their models and, once
they are satis�ed with the programming speci�cation, run the model on all 16
implicates. In this sense, synthetic data are no di¤erent from any other micro-
data set. Analyses are run in exactly the same manner but are repeated multiple
times. We recommend saving analysis results such as regression coe¢ cients or
summary statistics in a data set that can be manipulated on its own. This will
be useful for combining results. We also recommend that users base all their
statistical inferences by properly combining results from all the implicates. That
is, we do not recommend that users conduct statistical speci�cation searches on
a single implicate and then estimate ��nal� standard errors with the proper
formulae. The statistical inference theory that underlies partially synthetic
data with multiple imputation relies on the multiple analyses, conducted on
independently drawn implicates, to re�ect the model uncertainty inherent in
the original con�dential data.
Any statistic of interest to a researcher can be calculated from the synthetic

data by calculating it once per synthetic implicate and then averaging across
the 16 implicates. If the researcher wants to know the mean of variable x, he
or she should calculate the mean of x in each of the 16 implicates and then
calculate the simple average of these 16 separate means to get one grand mean.
If the researcher wants to know the variance of x, he or she should follow the
same procedure: calculate the variance in each implicate and then calculate
the simple average of these 16 statistics to get one grand variance. Point
estimates for any statistic of interest from regression results to moments or
percentiles of a distribution can be obtained in this manner. In the standard
combining formulae, every implicate is equally weighted, so simple averaging
is all that is required. Formally, for a statistic q(`;k) calculated from the
kth synthetic implicate created from the `th completed data implicate, a point
estimate is created by averaging across the r synthetic implicates associated with
each completed data implicate and then across all m completed data implicates
using the following formula:

average across synthetic and missing data implicates: �qM =
mX
`=1

rX
k=1

q(`;k)

mr

The calculation of the estimated total variance of a statistic of interest,
from which one might compute a con�dence interval or test statistic, is more
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complicated but still can be performed with standard software. In addition to
the statistic of interest, the user should save the estimated sampling variance of
this statistic for each of themr synthetic implicates. For example, if calculating
the mean of x, the user should calculate the sampling variance of the mean of x
for each implicate.7 The within-implicate sampling variances are then averaged
to estimate the average within-implicate variance, the �rst component of the
total variance. Thus if u(`;k) is the variance of q(`;k), then the within-implicate
variance is formally de�ned as:

average variance across synthetic and missing data implicates

�uM =

mX
`=1

rX
k=1

u(`;k)

mr
=

mX
`=1

�u(`)

m

The next piece of the total variance formula is the between-synthetic-data-
implicate variance which quanti�es the variation introduced by di¤erences be-
tween synthetic implicates that were generated from the same missing data im-
plicate, i.e., deviations of the synthetic implicate from the average across all syn-
thetic implicates generated from the same completed data implicate, q(`;k)��q(`),
de�ned as:

average across the synthetic implicates

�q(`) =
rX

k=1

q(`;k)

r

variance across synthetic implicates

b(`) =
rX

k=1

�
q(`;k) � �q(`)

� �
q(`;k) � �q(`)

�0
r � 1

average variance across synthetic implicates

bM =
mX
`=1

rX
k=1

�
q(`;k) � �q(`)

� �
q(`;k) � �q(`)

�0
m (r � 1) =

mX
`=1

b(`)

m

To calculate bM , the user �rst calculates the variance of the statistic across the
four r implicates associated with a particular m implicate. There will be m
of these variances: one per completed data implicate. These m variances are
then averaged to give the overall between-synthetic-data-implicate variance.
The �nal piece of the total variance is the between-missing-data-implicate

variance:

variance across missing data implicates: BM =
mX
`=1

�
�q(`) � �qM

� �
�q(`) � �qM

�0
m� 1 :

7The reader is cautioned to be certain to perform all calculations on variances and not
standard deviations. To compute a standard deviation or standard error, the square root
operation should be peformed on the total variance that has been computed by combining all
of the component variances appropriately.
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The user calculates the mean of the statistic of interest for all the synthetic
implicates associated with a particular completed data implicate. Again, there
will be m of these means. The between m implicate variance, BM , is the
variance of these m means.
The variance pieces are then combined to create the total variance for the

statistic using the following formula:

total variance: TM =

�
1 +

1

m

�
BM � bM

r
+ �uM :

When m and r are moderate and the estimator �qM is univariate, inference is
based on (�qM �Q) � t�M (0; TM ) where the degrees of freedom �M are de�ned
as

degrees of freedom: �M =
1�

((1+ 1
m )BM)

2

(m�1)T 2M
+ (bM=r)

2

m(r�1)T 2M

�
Proofs and details can be found in Reiter (2004). In the case that the total vari-
ance becomes negative, we recommend not subtracting the between-synthetic-
data-implicate variance when calculating the total variance. The con�dence
interval can be calculated using the asymptotic assumption of normality instead
of the �nite sample t�distribution.
When presenting research results, users should not report the results from a

single synthetic implicate. This is not an accurate representation of either the
point estimates or their associated variances. This is especially important when
comparing synthetic and completed data in order to determine analytic validity.
No synthetic implicate can be judged for accuracy as a stand-alone �le. It must
be considered in conjunction with the other synthetic data sets. Likewise, all
implicates of the completed data must be used together in order to create a
comparison basis. The formulae for combining completed data implicates are
similar to those for combining synthetic implicates and are as follows:

average across implicates: �qm =
mX
`=1

q(`)

m
:

variance across implicates: bm =
mX
`=1

�
q(`) � �qm

� �
q(`) � �qm

�0
m� 1

variance on each implicate �le: u(`) = u
�
D(`)

�
average variance across implicates: �um =

mX
`=1

u(`)

m
:

total variance: Tm = �um +
�
1 +

1

m

�
bm

degrees of freedom: �m = (m� 1)
 
1 +

�um�
1 + 1

m

�
bm

!2
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6 Analytic Validity

Many potential SSB users are concerned about the analytic validity of this data
product and ask whether they will get the same answers using the synthetic
data as they would using the internal con�dential data. How the synthetic
data compare to the con�dential data typically depends on the research question
and the sample of individuals chosen. Due to the experimental nature of the
SSB and to faciliate further development of the synthesis process, Census will
conduct a validation exercise for any researcher who submits error-free programs
via the Cornell Virtual RDC Synthetic Data Server (SDS). After review of the
con�dential results by authorized Census employees, disclosable results will be
released to the researcher for use in papers and publications. In this way,
researchers can have con�dence that they will be able to identify any di¤erences
in results due to synthetic data. At the same time, Census researchers can track
the performance of the SSB and make improvements to the modeling process
that enhance analytic validity.

7 Challenges and Future Research

The Census Bureau envisions the SSB as a constantly evolving data product.
Because it provides researchers with access to (synthetic) administrative data
without requiring special permission or use of a secure Census computing en-
vironment, demand continues to grow. Many researchers request additional
SIPP variables. Unfortunately the synthesis process is long and complicated
enough that producing new versions has only been possible every 2-3 years.
This has made meeting researcher demand for new variables and new SIPP
panels di¢ cult.
In 2014, the SIPP will be conducted using a completely re-designed survey

instrument. Interviews will happen only once a year and the format of the
data will be quite a bit di¤erent. While much of the content will remain the
same, assimilating the 2014 panel into the GSF will be challenging. The SSB
development team is currently considering whether a separate GSF �le will be
required for panels beginning in or after 2014.
Two major areas of current SSB research are in progress in the Census

Bureau. The �rst involves developing the link between parents and children
and testing the research value of this link and considering the disclosure issues
surrounding this link. Currently version 5.1 does not link any family mem-
bers except spouses. The addition of a link between parents and children and
consequently siblings would perhaps have to be synthesized in order to pro-
tect con�dentiality. There are currently no existing methods for doing this,
and hence this work will represent new research in the �eld of synthetic data
creation.
The second area of research involves the creation of a job-level �le for SSB

respondents that would link individuals to their employers over time and would
provide information such as an industry and �rm size history, as well as earnings
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by employer. SSB sta¤ have created the basic structure of this person-employer
match �le using the administrative earnings records and are now working on in-
tegrating SIPP job reports using name and address linking techniques. The
administrative data will add more historical �rm-level information to the rela-
tively short employment history collected by the survey, whereas the SIPP will
add more detail about labor supply to the jobs captured by both the survey
and the administrative data. The release of an employee-employer match �le
will also present challenges, of the same nature as family links but even more
complicated because of the number of employers per individual.
For now, the full family and employer links are being created as part of

the next version of the GSF but will most likely not be released as part of the
next version of the SSB. Rather some summary measures such as total number
of employers, industry of main employers, earnings of parents attached to the
records of their children will most likely be employed while Census continues to
research methods for protecting con�dential linked data.
In spite of the challenges of creating synthetic data, users are increasingly

�nding the SSB to be a useful product that allows access to data that have
previously been unavailable to non-government researchers. The continued
development and availability of this data product depends in large part on the
successful interaction between the government and the research community. As
researchers provide feedback on how e¤ectively they can use the SSB for research
and as statistical research on data synthesis methods progresses, the SSB will
continue to expand and improve, covering more topics with more reliable data.
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9 Appendix A: History of the SSB

In February 2001, a temporary U.S. Treasury Regulation went into e¤ect that
allowed the U.S. Census Bureau to obtain administrative W-2 earnings data for
certain survey respondents from the Social Security Administration (SSA) and
the Internal Revenue Service (IRS) for the purpose of improving core Census
Bureau data products8 . One of the �rst primary goals was to create a new public
use �le that linked existing public-use survey data from the Survey of Income
and Program Participation with the W-2 data and administrative bene�ts data
maintained by SSA. The creation of this new product was a joint e¤ort of
Census, IRS, and SSA, with all three agencies contributing data and statistical
expertise and Census and SSA providing funding.
In consultation with outside researchers and the Congressional Budget O¢ ce

(CBO), the Census Bureau created a standardized extract of variables from �ve
SIPP panels (1990, 1991, 1992, 1993, and 1996) and merged these extracts with
individual administrative earnings and bene�ts records. These extracts were
then combined to create the �rst version of the Gold Standard in 2002. The
Census Bureau produced the �rst synthetic version of these data in late fall
2003, and called it the SIPP/SSA/IRS Public Use File version 1.0. However
this �le was always viewed as preliminary and was never released to the public.
Three other preliminary public use �les were created: version 2.0 (fall 2004),
version 3.0 (December 2005), and version 3.1 (June 2006). The Census Bureau
completed work on version 4.0 in December 2006 and this version was released
to the public in the spring of 2007.
SSB v4.0 contained the following unsynthesized variables: gender, marital

status at time of wave 2, link to spouse (if married), type of OASDI bene�t at
time of initial claim and type of OASDI bene�t in the year 2000. It did not
contain any indicator for SIPP panel and so all SIPP respondents were required
to have the same data present, regardless of their source panel. This design
decision meant that large amounts of missing data had to be completed for
respondents in years when they were not surveyed. For example, total income
for SIPP respondents in the 1990 panel had to be imputed from mid-1992 onward
because the 1990 panel ended part-way through 1992. SSB v4.0 also contained

8 In February 2003, the temporary Treasury Regulation became �nal (see Federal Register,
Vol. 68, No. 13 Tuesday, January 21, 2003, Rules and Regulations, pp. 2691-5).
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a weight, meant to make the full set of respondents age 15 and older from all �ve
panels representative of the civilian, non-institutionalized national population
in the year 2000.
After extensive analytic validity testing by Census, SSA, and outside re-

searchers, some design changes were made and version 5.0 was created. This
version added the 2001 and 2004 SIPP panels and an indicator for the source
panel was included in the data. This decision was made in order to prevent the
necessity of imputing so much missing data. The OASDI bene�t variables were
expanded and SSI bene�t variables were added. Version 5.0 had the same set
of unsynthesized variables as version 4.0 but it did not contain the cross-panel
year 2000 weight. This weight had not been successful in re-producing popu-
lation statistics and e¤orts to correct it were postponed until another version.
In order to speed the release of new data, time-varying SIPP variables were left
o¤ when SSB version 5.0 was released to the public in December 2010.
Version 5.1 uses the same SIPP panels as version 5.0 but adds a substantial

number of SIPP variables, in particular, ones which vary over time. This
version is being released in May 2013. Version 5.1 also has fewer unsynthesized
variables, with only gender and spouse link being unsynthesized. We have
also made signi�cant improvements to our modeling of the earnings tax data by
�rst cleaning the underlying data in order to prevent administrative data error
from skewing our synthesis process. Version 5.1 is also the �rst SSB to contain
geography (state at time of interview).
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