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1 Introduction

This paper reports on the creation of a fully synthetic Census Bureau data
product called the SIPP Synthetic Beta (SSB). It serves as an update to a
previous paper, Benedetto, Stinson, and Abowd (2013), which described version
5.0 of the SSB. Our purpose is to inform users of the SSB about how the file was
created and to provide an example of the application of data synthesis methods
to those doing research in this area. We also hope to provide some guidance for
other organizations which might be interested in creating their own synthetic
data products.

We begin by providing a brief overview of how the SSB is created. We then
turn to the details of our methodology, beginning with a short review of the
literature that supplies the theory for data synthesis as a means of protecting
confidential data. We follow with a more detailed description of how we applied
this theory. We then explain how we tested the synthetic data for disclosure
risk and provide guidance to researchers on how to use the SSB. We finish with
a discussion of the challenges of creating useful synthetic data and an outline of
plans for future development. Appendix A gives a short history of the creation
of the SSB and describes the evolution of this product across different versions.

2 Overview of the Creation of the SSB

The purpose of the SSB is to provide to researchers outside Census-secure fa-
cilities data from the Survey of Income and Program Participation linked to
administrative records pertaining to earnings and benefits. From the begin-
ning of the project, two over-arching requirements have guided the decisions
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about the type of file to create. First, the file should contain micro-data in
a format usable by researchers and others familiar with the structure and con-
tent of the regular SIPP public-use files. Second, the file should stand alone
and not be linkable to any of the existing SIPP public-use products previously
published by the Census Bureau. These two criteria led the Census Bureau
to choose synthetic data as the primary disclosure avoidance method. The
main purpose of this paper is to educate researchers about synthetic data, in
particular how these data were created and how they should be used.

As the first step in this process, the Census Bureau created a standardized
extract of variables from a set of SIPP panels and merged these extracts with
individual administrative earnings and benefits records.1 These extracts were
combined and named the SIPP Gold Standard File (GSF). This file serves as the
basis for the creation of the SSB. It establishes the metadata for each variable,
determines the sample of people to be included, and serves as the source data
for the modeling required to create the synthetic data.

For version 7.0, we synthesize four implicates from the GSF. Unlike in past
versions of the SSB, every variable is now synthesized as is the missing data
pattern. The synthesis process will assign missing values with a distinction
between structurally missing and non-structurally missing (i.e., missing-to-be-
replaced) data.2 It is then up to the user to determine how they wish to address
these missing-to-be-replaced values.3 After the creation of the synthetic data,
we then tested for disclosure risk by attempting to link our synthetic data back
to the Gold Standard. Even using some inside knowledge not available to a
potential intruder, we were not able to reliably match synthetic records to the
correct Gold Standard records.4

Over time, the SSB has been extensively tested for analytic validity as new
versions have been released. Currently the Census Bureau offers outside re-
searchers the option of having analyses done with the SSB validated using the
Gold Standard File. If the requested output passes disclosure review, the Cen-
sus Bureau will release results from analyses done on these confidential data
so that analysts can know what impact synthesis had on the data relationships
they estimated. Feedback from these validation exercises, in turn, helps further
the development of the synthesis process. For more information on using the
SSB and doing validation work, please visit https://www.census.gov/programs-
surveys/sipp/guidance/sipp-synthetic-beta-data-product.html.

1Version 7.0 contains data from the 1984, 1990, 1991, 1992, 1993, 1996, 2001, 2004, and
2008 SIPP panels and the SSA Detailed Earnings Record (DER), Summary Earnings Record
(SER), Master Beneficiary Record (MBR), Supplemental Security Record (SSR), and Payment
History Update System (PHUS).

2For version 7.0, we maintain in the GSF non-missing values for SIPP-based variables only
if the value was either logically imputed or not imputed. Such determinations are made based
on SIPP allocation flags. If an allocation flag was not available for a particular variable, we
use the given SIPP value as we cannot distinguish between non-imputed and imputed values.

3See Section 5.2 for greater details.
4See Section 4 for full details on our disclosure testing.
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3 Methodology

3.1 Review of Literature on Multiple Imputation

Protecting the identity of individuals whose personal and financial characteris-
tics are released in a micro-data set has long been an important research topic
in statistics. Since its launch in 1984, the public-use SIPP has relied exclusively
on top-coding and cell suppression to handle disclosure issues. The addition
of many administrative variables to create the SIPP Gold Standard File raised
concern that these methods were no longer sufficient to protect the identify of
SIPP respondents. As a result, new methods were sought from the research
literature as well as the examples of other federal data sources. To help the
reader understand the approach we adopted, we begin by describing the devel-
opment of multiple imputation theory and its subsequent application to data
protection methods which came to be called data synthesis.

Rubin first proposed multiple imputation as a way to handle missing data
problems. In his seminal book (Rubin 1982), he advocates applying any given
imputation method multiple times to create many replacement values for miss-
ing data. This approach produces multiple copies of the data set with each copy
having its missing values replaced with one of the sets of imputed values. The
extra variability introduced by the missing data needs to be taken into account
or else the confidence intervals generated for statistics produced using the data
will be too small, i.e. parameters will be determined to be significant too often.
By generating multiple data sets or implicates, the user can run a standard
analysis on each one and then calculate the within-implicate variance (standard
variance measure) and the between-implicate variance (variance across the im-
plicates). The total variance formula then has these two components which
take account of the standard measure of variance and the variance introduced
by the imputation.5

The idea that imputation of missing data and creation of synthetic data are
related comes from Rubin (1993) and Little (1993). Rubin’s original idea was
that multiple imputation could be used to fill in survey responses for the entire
population of individuals from which the original survey sample had been drawn.
In essence, for individuals not sampled by the survey, the survey variables were
treated as missing and then multiply imputed. From this population with
complete data, new synthetic samples would be created by drawing individuals
from the population. The multiply imputed survey responses for these individ-
uals could be released because they were not actual responses. Little proposed
imputation to replace original values as one of many possible mechanisms of
disclosure protection.

Rubin’s argument for using this method was that researchers using the data
would not need special statistical software to analyze such data. Rather, they
could use standard methods and then combine results across implicates using ap-
propriate formulae. All the burden for modeling and creating the synthetic data
fell on the data producer, who Rubin felt was most likely to have the necessary

5We provide a detailed discussion of the total variance formula in Section 5 of this paper
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resources and expertise. At the same time, survey response would theoretically
improve since no actual respondent-reported data would be released. Further,
data intruders looking to identify individuals in public-use data products could
be expected to shy away from synthetic data.

Rubin’s original idea for data synthesis was very general and did not suggest
a specific imputation method. Early work modeled data sets with very small
numbers of typically same-kind variables. The distribution of the variables with
missing data was specificed to be conditional on all the other observed values
and some unknown parameters which had a specific prior distribution. This
model then produced a posterior predictive distribution from which draws were
taken to replace the missing values. However, explicit multivariate conditional
models are difficult to make when the data are complex with many types of
variables (e.g. continuous, discrete, or categorical), as well as when restrictions
on one variable are implied by another variable. Raghunathan et al. (2001)
proposed a general purpose multivariate imputation procedure called sequential
regression multivariate imputation (SRMI). SRMI factors the joint conditional
density into a series of conditional density functions where a single variable with
missing data was modeled as conditional on other variables (with and without
missing data) and a set of parameters. The imputation proceeds through all
the variables with missing data, and as values are imputed, they are included as
explanatory variables in the next round of imputation. The imputation process
is completed for a certain number of rounds in order to allow all the variables
to influence each other regardless of the order in which the data completion is
done.

From these original ideas, the idea of partially synthetic data has been devel-
oped. Unlike fully synthetic data, original sample members remain in the file.
However their responses are replaced by values which are multiply imputed.
As described by Reiter and Raghunathan (2007), partially synthetic data sets
look like data sets that have missing values replaced by multiple imputation
methods but in fact the multiple imputation methods produce replacements for
self-reported data. One early application of partially synthetic data to protect
confidentiality was the Survey of Consumer Finances, described in Kennickell
(1997). Abowd and Woodcock (2001) synthesized an early prototype of linked
employee-employer data. Today the Census Bureau releases two partially syn-
thetic data products in addition to the now fully synthetic SSB. The first is
the Longitudinal Business Database (LBD) which is described in Kinny et al.
(2011) and the second is On The Map which is described in Machanavajjhala
et al. (2008).

3.2 Data Synthesis and Completion Methods

3.2.1 Summary of synthetic data production

We now provide specific details about the process used to create our synthetic
data product. The first step of the process was to create a “snapshot” of the
internal SIPP GSF. This file only includes variables that go onto the corre-
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sponding version of the SSB. As the SIPP GSF changes or grows internally, the
snapshot for a given version of the SSB remains unchanged, so that analysis on
the SSB and its snapshot remain comparable.

There are two types of missing data in the snapshot: missing-to-be-replaced
values and structurally missing values. In contrast to missing-to-be-replaced
data, structurally missing data occur when an item is missing due to the logical
structure of a set of variables in the survey or administrative record. For survey
data, structurally missing values occur when the skip logic of the survey dictates
that a question should not be asked because of the response given to a prior
question. Administrative record data have a similar, albeit implicit, structure.
Lack of participation in the formal labor market or SSA programs will produce
structural zeros for earnings and benefits respectively. In this paper, we use the
term “missing” to mean missing-to-be-replaced and will explicitly describe any
other data that are missing as structurally missing. For the SIPP variables,
we preserved any logical relationships among variables by imposing restrictions
on down-stream variables (called “child” variables) using values of up-stream
variables (called “parent variables”). We describe the types of models and the
specification of logical relationships among variables in more detail in Section
3.2.2.

From the GSF snapshot, we synthesize four distinct files by building up
the synthetic data as a series of conditional marginals, using only previously
synthesized variables as explanatory variables. After estimating the model,
we impute a value for each variable based upon the most up-to-date synthetic
data. Hence while the synthetic variables are not used in the model estimation,
they are used to impute other synthetic values in order to keep the synthetic
data internally consistent. Note that in version 7.0, we model missing values,
making a distinction in the data between structurally missing values and non-
structurally missing values. This change from past versions grants the data user
greater freedom of choice in how to handle missing values. Potential options
for addressing missing values are described in Section 5.2.

3.2.2 Modeling details

We model the joint distribution of all the variables in the snapshot as a sequence
of conditional marginals.

p(Y1, ..., YK) = p(Y1)p(Y2|Y1)...p(YK |Y1, Y2, ..., YK−1)

In implementing this sequential regression approach, we made four decisions
for each variable that was synthesized. First, we chose what type of model
to use (OLS, logistic, Bayesian bootstrap); second, we designated parent-child
relationships among variables; third, we defined restrictions to be placed on
the values of variables when necessary; fourth, we chose a set of grouping and
conditioning variables to use in modeling. In this section we explain the three
types of models and describe the process for the last three steps. Indicators
for missingness were treated as variables to be modeled and synthesized in this
sequence, and their synthesized values then determined the universe for the
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regular variables downstream. The SSB version 7.0 codebook lists some specific
modeling details for each variable.

Models of variables The first information the analyst must provide about
a variable to be synthesized is the model type. We used three major modeling
techniques: normal linear regression (OLS), logistic regression, and Bayesian
bootstrap. The purpose of the modeling step is to estimate a posterior predic-
tive distribution (PPD) for each variable and then take draws from this PPD to
replace the values. The PPD is simply the probability distribution of the data
we are trying to produce conditional on the data we observe. More formally,
the PPD for variable yk is defined as:

PPD = P (yk | Y m, X) = p(yk | Y m
∼k, X, θ)p(θ | Y m, X)dθ

X = non-missing, non-modeled variables

Y m = completed data

We use linear regression models to estimate the PPD for continuous vari-
ables. In this case, the parameters, θ, are assumed have normal/inverted gamma
distributions and the regression produces estimates of the mean and variance of
these distributions, giving us p(θ | Y m, X). We then use standard techniques to
take a draw from the θ distribution to produce a set of parameters (β′s and σ2)
for predicting values. Using these parameters and the observed values of the
other data elements provides us with p(yk | Y m

∼k, X, θ), which we also assume
is normal with mean βX and variance σ2. A draw from this distribution is
simply a predicted value from the linear regression, given the set of β′s and σ2

that we drew earlier.
The basics of this method will seem familiar to most researchers. We esti-

mate a relationship between the observed values of a dependent variable and a
set of independent variables also found in the data. This relationship is charac-
terized by a set of regression coefficients and the standard error of the equation
and involves assumptions about the model form and the distribution of the
model parameters. We use these estimated parameters to predict a value for
individuals missing data or for all individuals in the case of synthetic data. The
key insight is that the regression parameters are themselves random variables
and as such must be sampled. This sampling of parameters replicates the un-
derlying uncertainty from estimating our model on a sample of data instead of a
universe. By taking multiple draws from the regression parameter distribution,
we provide data that allows users to take account of this uncertainty.

It is sometimes the case that the univariate distribution of the variable we
are trying to synthesize, yk, differs greatly from conditional normality. This
situation is undesirable as it will cause the distribution of the synthetic values
to differ from that of the confidential values. To handle these variables, we
transform the confidential data so that they have an approximately normal
distribution, estimate the posterior predictive model on the transformed data,
and perform the inverse transformation on the imputed values. This process is
described in detail in Benedetto and Woodcock (2006).
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For binary discrete variables, the PPD is based on the asymptotic posterior
distribution of the parameters of a logistic regression model. Otherwise the
methods are the same as in the linear regression models. Finally, for Bayesian
bootstrap models, we define the PPD in a non-parametric way. We begin by
selecting a set of n individuals who are eligible to be donors for either the missing
or synthetic data. In a regular bootstrap, the probability of selecting any given
individual to be a donor is 1

n , and there is no uncertainty in what probability
is assigned to a given observation. In contrast, in a Bayesian bootstrap, the
probability of individual i being chosen as a donor is pi, which is modeled from
the sample data and is centered around 1

n . The set of probabilities, p1 to
pn is the non-parametric representation of the PPD. By not assigning equal
probabilities to all donors, the Bayesian bootstrap accounts for the fact that
the sample distribution may not be the same as the population distribution.
Performing the Bayesian bootstrap multiple times allows users to estimate the
uncertainty introduced by imputation and synthesis. See Rubin (1981) for more
details on this method.

Synthesis of Familial Linkages Variables providing record identifiers in-
dicating family relationships between respondents cannot be synthesized with
the methods described above, but they can potentially reveal private informa-
tion. In previous versions of the SSB, we left the first observed spousal linkage
between spouses in the SIPP unsynthesized, and we did not provide any parent-
child linkages. We did this by making a wide file of male variables and female
variables, and for linked couples, all of these columns were in scope.6 This meant
synthesizing twice as many variables in order to preserve correlations between
spousal variables, and yet we still often observed quite a bit of decay in these
correlations in the synthetic data. Expanding this method to parent-child links
would mean expanding the width of the file by at least a factor equivalent to
the maximum number of children of a parent in addition to many more prac-
tical problems. To get around these issues, our approach for version 7.0 was
to synthesize all the columns of a person-level file and then randomly link rows
as spouses or parent-child in a way intended to preserve correlation between
variables of family members.

To synthesize familial linkages between synthetic records, we developed a
new approach that is similar in concept to predictive mean matching. For ease
of explanation, we will describe the process for spouses, but the same process
is used for matching children to mothers. The set of potential wives and
husbands is determined from the sequential regression synthesis of the indicator
for whether a record is a member of a linked couple in the survey.

Consider a set of variables for potential wives, x1 – xkw
, and a set of variables

for potential husbands, y1 – ykh
(in theory, these can be different variables, but

for spouses, these were the same). Using the same non-parametric transform

6Co-habitating same-sex partners were not allowed to declare themselves married in the
SIPP panels contained in SSB v7.0. Hence a married couple and any associated spousal
linkage always have both a male and female component.
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used in the linear regression, we transform all of these variables to approximately
standard normal distributions. Call the vector of transformed variables, [x̃1 –
x̃kw

ỹ1 – ỹkh
], which, for spouses, are approximately distributed as a multivariate

normal with mean vector, µ = [µw µh], and covariance matrix, Σ =
[

Σww Σwh

Σhw Σhh

]
.

From the observed spouses in the internal data, we can estimate µ and Σ as
µ̂ and Σ̂. We do this on a Bayesian Bootstrap of the internal data so as to
account for sample uncertainty and follow posterior predictive sampling.

We then take the synthetic values of x̃1 – x̃kw for our set of potential wives
in the synthetic data, and draw for them candidate husband values from the
conditional multivariate normal distribution of x̃1 – x̃kh

given x̃1 – x̃kw
. Fi-

nally, we go through the wife set in random order, and assign each wife the
husband from the potential husband set whose synthetic values of x̃1 – x̃kh

are
closest (determined by standardized Euclidean distance) to the candidate hus-
band values. Once a husband is assigned to a wife, that pair is removed from
the potential sets of husbands and wives. This continues until every potential
wife has a husband, or until the set of potential husbands is empty. For the
case of linking children to mothers, once a child has been assigned to a mother,
that child is removed from the set of potential children, but the mother is not
removed until she has been assigned a number of children on the survey roster
which was synthesized in the sequential regression step (or until the potential
set of children is empty).

4 Analysis of Disclosure Risk

The link between administrative earnings, benefits, and SIPP data adds a sig-
nificant amount of information to an already very detailed survey and warrants
careful investigation of possible disclosure risks beyond those originally man-
aged as part of the regular SIPP public use file disclosure avoidance process.
The creation of synthetic data is meant to mitigate those risks by preventing
a link between these new public-use files and the original SIPP public-use files,
which are already in the public domain.7

While the type of data synthesis used for this product is not a quantifiable
privacy technique, we have attempted to measure the privacy protection and
data utility of the synthetic data. We have a measure of data utility (see
section 4.1 below) and a measure of privacy protection (see section 4.2). Given
our posterior predictive sampling method of data synthesis, we cannot easily
vary the level of noise introduced through synthesis, so we cannot generate the
theoretical graph of the trade-off of privacy protection (noise injection) and data
utility. We will, however, use our measures of privacy protection and data utility
to try to give a sense of where the synthetic data lies in this graph.

7We also note that SSB version 7.0 will not be linkable to past SSB versions.
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4.1 Data Utility Measure

For our measure of data utility, we stack the internal data and the synthetic data
and make an indicator variable which equals 0 if the record is internal, and 1 if
the record is synthetic. We then run a logistic regression of this indicator on all
the variables in the file (sometimes making summaries of groups of variables).
Then we calculate the mean squared error (MSE) of the predicted probability
from 0.5 and call this pMSE. The optimal data utility would lead to a predicted
probability of 0.5 for all records (internal or synthetic) and a MSE of 0. If we
were able to perfectly predict the source with certainty, then the squared error
would always be 0.25 ((1−0.5)2 for synthetic records and (0−0.5)2 for internal
records). Therefore, the worst case MSE is 0.25. To make our final data utility
measure go from 0 (worst data utility) to 1 (optimal data utility), we set it equal
to 1-(pMSE

0.25 ). This measure is averaged across the 4 synthetic implicates to give
us a single value.

4.2 Privacy Protection Measure

The most basic thing we can do to check privacy protection is to find the syn-
thetic record with the minimum standardized Euclidean distance from each
internal record and check to see if the underlying record was the same. Given
that we have synthesized every variable, it is perhaps not surprising that this
kind of re-identification almost always fails. In fact, in three of the four syn-
thetic implicates there was only one match, and in the other there were zero
matches. This is what we would expect by sheer random chance that 1

N records
would happen to line up perfectly.

We also are concerned with what the closest synthetic record might tell an
intruder even if that record is not the same underlying record. Using the
standardized Euclidean distance to find the closest synthetic record to each
internal record, we want to see how much that synthetic record tells us about
the values of the variables on the internal record. For each variable we calculate
the root mean squared error (RMSE) of the nearest synthetic record’s values
to the internal values. We standardize this measure by dividing the RMSE
by the sample standard deviation (STDDEV) of that variable on the internal
file. We then average this across all the variables, to get a grand average of
RMSE/STDDEV for the given synthetic file. Finally, we average this across
the 4 synthetic implicates to get our measure of privacy protection. The worst
possible protection would result in this measure being 0 (RMSE=0 implies the
synthetic values of the nearest synthetic record are exactly equal to the internal
record for all variables and all records). If the protection was so strong that we
know nothing more about an internal record from its nearest synthetic record
than we would know from the overall distribution of all the variables, then the
RMSE would equal the STDDEV for every variable, and our final measure would
be 1. So while, in theory, this measure could be greater than 1, in practice we
can expect this measure to range from 0 being the worst protection to 1 being
the best protection.
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Figure 1 shows our measure of privacy protection and data utility plotted on
the theoretical graph of the optimal trade-off of privacy and utility. To give the
reader a better intuition for what this level of privacy means in practice, Tables
1 and 2 show the RMSE of the synthetic value of the nearest synthetic record
from each internal record by quantile bins for a couple of sensitive variables.
Table 1 shows this for total net worth, which was directly conditioned on in the
nearest neighbor match. Table 2 shows this for total FICA covered earnings in
2010 from the Detailed Earnings Record, which was not directly conditioned on
in the nearest neighbor match (for the longitudinal arrays we used summaries of
the arrays for dimension reduction). As a result, this should give a sense of what
an intruder with a certain set of information on a respondent can learn about
a variable for that respondent outside of that set. We see in Table 1 that even
for a variable with a ratio of RMSE to STDDEV equal to only 0.285 (calculated
using the natural log of total net worth as the matching variable), the RMSE
for a sensitive variable like total net worth on its original scale is very large,
increasingly so as we get into higher parts of the distribution. Therefore, even
for outliers, the nearest synthetic record tells the intruder very little. Table 2
shows us that if an intruder is trying to find out about a variable that he does
not already have when attempting a nearest neighbor attack, the uncertainty
is so high that the RMSE is actually much larger than the overall STDDEV of
that variable. Further, if one is most concerned about outliers, the RMSE gets
larger in the higher parts of the distribution as before.

5 Using the SSB

5.1 Working with the Data

Many potential users may be concerned about how to begin using synthetic
data. In this section we give some advice for using these data sets to perform
analyses and provide the exact formulae for combining results from multiple
implicates.

We suggest that users begin with one synthetic implicate and write code
to prepare variables and verify the specification of statistical models for this
single data set. Since all the synthetic implicates are identical in terms of file
structure, number of records, variables names, etc., any code that works on one
implicate also works on the remaining implicates. Users can debug their models
and, once they are satisfied with the programming specification, run the model
on all implicates. In this sense, synthetic data are no different from any other
micro-data set. Analyses are run in exactly the same manner but are repeated
multiple times. We recommend saving analysis results such as regression co-
efficients or summary statistics in a data set that can be manipulated on its
own. This will be useful for combining results. We also recommend that users
base all their statistical inferences by properly combining results from all the
implicates. That is, we do not recommend that users conduct statistical speci-
fication searches on a single implicate and then estimate “final” standard errors
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with the proper formulae. The statistical inference theory that underlies multi-
ple synthetic data files and multiple imputation relies on the multiple analyses,
conducted on independently drawn implicates, to reflect the model uncertainty
inherent in the original confidential data.

Any statistic of interest to a researcher can be calculated from the synthetic
data by calculating it once per synthetic implicate and then averaging across
all implicates. If the researcher wants to know the mean of variable x, they
should calculate the mean of x in each implicate and then calculate the simple
average of these separate means across implicates to get one grand mean. If
the researcher wants to know the variance of x, they should follow the same
procedure: calculate the variance in each implicate and then calculate the
simple average of these statistics across implicates to get one grand variance.
Point estimates for any statistic of interest from regression results to moments
or percentiles of a distribution can be obtained in this manner. In the standard
combining formulae, every implicate is equally weighted, so simple averaging is
all that is required. The calculation of the estimated total variance of a statistic
of interest, from which one might compute a confidence interval or test statistic,
is more complicated but still can be performed with standard software.

The combining formulae depend on how the SSB user chooses to handle the
missing values in the synthetic files. If the user chooses to ignore the missing
values and perform listwise deletion (also known as complete case analysis) or
pairwise deletion (available case analysis), then the combination formulae are
as follows, based on the Yinc = Yobs case in Reiter (2004):

q̄r =

r∑
l=1

q(l)

r
(1)

br =

r∑
l=1

(q(l) − q̄r)2

(r − 1)
(2)

ūr =

r∑
l=1

u(l)

r
(3)

and

Tr = (
br
r

) + ūr (4)

vr = (r − 1)

(
1 +

ūr
(br/r)

)2

(5)
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Where q is our estimand, r is the number of synthetic replicates, q(l) is the
estimate of q on replicate l, and u(l) is the variance of q(l). We use these
to calculate our final estimate of q to be q̄r, which is student-T distributed
with variance, Tr, and degrees of freedom, vr. We see that the variance is
a combination of the variance across replicates of the point estimate in each
replicate, br, and the average across replicates of the variance in each replicate.
Thus, in addition to the statistic of interest (q(l)), the user should save the
estimated sampling variance of this statistic for each of the synthetic implicates
(u(l)). For example, if calculating the mean of x, the user should also calculate
the sampling variance of the mean of x for each implicate.8

While the inclusion of missing values in SSB version 7.0 allows users to per-
form listwise or pairwise deletion, we recommend that users handle missing data
with the multiple imputation approach described earlier. Listwise or pairwise
deletion assumes missing values are missing completely at random (MCAR),
which is a very strong assumption that is likely to fail in most applications,
thus leading to biased estimates. Multiple imputation relaxes this assumption
and also accounts for missing data uncertainty. In order to assist users with how
to address missing data and sample uncertainty, we have developed programs
for SSB users that perform different solutions including multiple imputation.
These programs and their methods are described in the next two sections.

Multiple imputation changes the combination formulae. If we were to mul-
tiply impute missing data for synthetic replicate, l, then for that replicate, we
would have:

q̄(l) =

m∑
i=1

q
(l)
i

m

b(l) =

m∑
i=1

(q
(l)
i − q̄(l))2

(m− 1)

ū(l) =

m∑
i=1

u
(l)
i

m

and

T (l)
m = (1 + 1/m)b(l) + ū(l)

So for equations (1) and (3), the u(l) = T
(l)
m and the q(l) = q̄(l), so that gives

us:

q̄r =

r∑
l=1

m∑
i=1

q
(l)
i

mr

8The reader is cautioned to be certain to perform all calculations on variances and not
standard deviations. To compute a standard deviation or standard error, the square root
operation should be performed on the total variance that has been computed by combining
all of the component variances appropriately.
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ūr =
1

r

(
r∑

l=1

(
(1 + 1/m)

(
m∑
i=1

(q
(l)
i − q̄(l))2

(m− 1)

)
+

m∑
i=1

u
(l)
i

m

))
If we break up q̄M into the two pieces and rename things according to the

notation in Reiter (2004), then our final combination formulae for combining
completed implicates across synthetic replicates is as follows:

q̄M = q̄r =

r∑
l=1

m∑
i=1

q
(l)
i

mr
(6)

BM = br =

r∑
l=1

(q(l) − q̄M )2

(r − 1)
(7)

b̄M =
1

r

r∑
l=1

(
m∑
i=1

q
(l)
i − q̄(l)

(m− 1)

)
(8)

ūM =

r∑
l=1

m∑
i=1

u
(l)
i

mr
(9)

and equations (4) and (5) become:

Tr = (
BM

r
) + (1 + 1/m)b̄M + ūM (10)

vr = (r − 1)

(
1 +

(1 + 1/m)b̄M + ūM
(BM/r)

)2

(11)

Where q̄M is the final estimate for q, BM is the variance of our estimate
of q across replicates, b̄M is the average of the variance of the estimate across
replicates, and ūM is the average variance across replicates and implicates. The
final estimate, q̄M , is student-T distributed with variance, Tr, and degrees of
freedom, vr. Proofs and details can be found in Reiter (2004).

When presenting research results, users should not report the results from a
single synthetic implicate. This is not an accurate representation of either the
point estimates or their associated variances. This is especially important when
comparing synthetic and completed data in order to determine analytic validity.
No synthetic implicate can be judged for accuracy as a stand-alone file. It must
be considered in conjunction with the other synthetic data sets. Likewise, all
implicates of multiply imputed data must be used together in order to create
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a comparison basis. The formulae for combining results based on the internal
GSF are similar to those for combining synthetic implicates. If the user chooses
not to multiply impute missing data, then analysis for their validation will be
based on a single data file and no combining will be needed. If the user chooses
to multiply impute missing data, then combination formulae are as follows:

average across implicates: q̄m =

m∑
i=1

qi
m

variance across implicates: bm =

m∑
i=1

(qi − q̄m)2

(m− 1)

variance on each implicate file: ui = u (Di)

average variance across implicates: ūm =

m∑
i=1

ui
m

total variance: Tm =

(
1 +

1

m

)
bm + ūm

degrees of freedom: νm = (m− 1)

(
1 +

ūm(
1 + 1

m

)
bm

)2

5.2 Addressing Missing Values

This section provides additional guidance on how users can handle missing val-
ues in the SSB. There are four broad categories for handling missing values:
dropping missing values, weight-based adjustments, imputing missing values,
and model-based inference. There are trade-offs associated with each method.
Imputation allows users to maintain larger sample sizes and relax MCAR as-
sumptions, but computing reliable imputations can be difficult and introduces
additional uncertainty into the data. Dropping missing values, also known as
listwise or pairwise deletion, avoids issues of imputation uncertainty, but does
so at the cost of smaller and potentially biased samples. Weight adjustments
can be applied to the complete- and available-case samples to bring the weights
back into alignment with stratified population totals which may help address
bias, but small sample issues may remain. While a robust literature exists
on weight adjustments, imputation, and model-based inference, many research
studies simply drop missing values with little or no discussion about how this
may affect the results.

This section focuses on two missing data methods: model-based inference
via sequential regression multivariate imputation (SRMI) and a weight-based
adjustment known as raking. The next two sections describe these two ap-
proaches both in theory and in application to the SSB. Example programs in
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SAS and Stata for using each approach with the SSB data are available to SSB
users on the synthetic data server.9

5.2.1 Sequential regression multivariate imputation

Common imputation methods include hot deck imputation, which substitutes
observed values for missing values; mean imputation, which substitutes group-
specific means for missing values; and regression imputation, which predicts
missing values based on the relationship between variables in the observed data.
These methods can be useful but may miss important associations between
missing or observed values and may underestimate variability. Furthermore,
by replacing the missing values with a single value, they fail to take into account
the uncertainty associated with missing values.

Multiple imputation addresses these shortcomings by imputing missing val-
ues several times. Multiple imputation has been shown to outperform the other
imputation-based methods in many situations, particularly when the missing-
data model is sound and for inference in smaller samples (Rubin, 1996; Fay,
1996; Rao, 1996). Multiple imputation can be performed in a variety of ways.
The discussion and analysis below uses Sequential Regression Multivariate Im-
putation (SRMI) (Raghunathan et al., 2001).

Examples programs on the synthetic data server show how to impute missing
values in the synthetic data using IVEware (Raghunathan et al., 2016). The
SAS procedure PROC MI is an alternative, but previous work has suggested
that IVEware performs better and is more user friendly than PROC MI (Viz-
carra and Sukasih, 2013). Because IVEware is written in macro language, it
can be combined with other procedures and data steps, both before and after
imputation, which makes it easy to combine with other user-written programs.
Additionally, IVEware has a number of features that can be used to specify de-
tailed model settings for the imputation. Examples of these include the ability
to model different types of variables, drop variables from the model, transfer
variables to the output dataset without being used in the imputation model,
restrict imputation to sub-populations, place bounds on imputation values, and
include interactions. The IVEware programs are available on the synthetic data
server for users to access in conjunction with their own programs. IVEware
provides SAS, Stata, and R versions of their programs.

5.2.2 Raking

Listwise and pariwise deletion are alternatives to imputation. Listwise deletion
refers to analyzing survey respondents who lack missing values for any variables.
Pairwise deletion refers to analyzing survey respondents who lack missing values
for only the variables of interest. In many cases, little attention is paid to
selection bias that may result from complete- or available-case analysis.

9The programs not only provide the raw code needed to perform the multiple imputation
or raking, but also incorporate the results into example analyses that provide additional useful
features, such as code for combining results across synthetic implicates as described earlier.
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One technique to account for potential bias arising from this approach is
raking adjustments to sample weights. Sample weights can become inaccurate
when respondents in the survey are dropped from analysis due to missing values;
if missing values occurs not at random but at differential rates across subsets
of the population, then certain sampling groups within the survey design may
become over- or under-represented in the sample when respondents with miss-
ing values are dropped. This is where raking adjustments become useful: in
these cases, the relationship between the sample and population can often be
improved by adjusting the sample weights such that marginal totals match spec-
ified control totals for particular cross-classifications of variables. The process
of raking is performed by iteratively adjusting marginal weighted population
totals to match that of a specified control total. The iteration continues until
each marginal weighted total is within a pre-specified threshold of the control
total. Additional discussion on raking adjustments can be found in Ireland
and Kullback (1968), Bishop et al. (1975), Kalton (1983), and Battaglia et al.
(2013).

Example programs for raking survey weights and using the raked weights for
analysis are available in SAS and Stata on the synthetic data server. The raking
program was written to be similar to the raking programs used for creating the
original SIPP weights. Thus, choices such as which variables, variable values,
and cross-classifications to use for constructing the marginal totals to which
the base weights are raked were largely based on similarity to SIPP programs,
availability of SIPP variables in the SSB, and publicly-available U.S. population
data for the necessary cross-classifications.

5.3 Addressing Sample Uncertainty

Surveys select samples of respondents from within specified groups, according
to sample selection criteria. This introduces sample uncertainty into the data,
which represents the uncertainty that the particular sample of the population
available to the researcher is representative of the entire population that the
sample is intended to represent. This uncertainty may be related to sampling
error, which results from the fact that the sample is not the entire population, or
non-sampling error, which results from flawed or biased sampling and collection
methods (Assael and Keon, 1982; Lessler and Kalsbeek, 1992). To account for
sample uncertainty, the sample selection, data collection, and analysis process
would need to be carried out many times. Variance estimates for parameters
of interest could then be constructed using the variance of parameter estimates
across samples. This is infeasible given the limited resources associated with
most surveys, so sample standard errors are often estimated using traditional
variance formulae that assume simple random sampling.

This simple random sampling assumption is problematic because expressions
of variance estimation based on complex survey designs can be quite compli-
cated; survey designs often produce data that do not satisfy the conditions
required for the application of variance formulae that assume simple random
sampling (McCarthy, 1966). A practical alternative is to repeatedly draw sub-
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samples from the full sample and then use the variance of estimates across
sub-samples to construct variance estimates. This generates more informed
standard error estimates that mimic the theoretical basis of standard errors
while retaining information about the sample design (McCarthy, 1966). These
sub-samples are commonly referred to as replicates. However, similar to the
tendency of research studies to drop missing values, many studies also do not
use this replicate process for generating variance estimates. The remainder of
this section describes the process of raking based on Fay’s Balanced Repeated
Replicate (BRR) method (Judkins, 1990) and how this approach can be used
with SSB data. Examples programs for constructing and using replicate weights
with the SSB are provided on the synthetic data server.

The BRR method is a half-sample replicate method for sample designs that
feature exactly two groups or clusters within each sample stratum. These
clusters are also sometimes referred to as half-samples. They can be used to split
the survey sample into two halves for each stratum. Performing BRR requires
two pieces of information from the sampling procedure: the stratum from which
each respondent was selected and the cluster from within that stratum to which
the respondent belongs.

The BRR method forms a series of half-sample replicates by selecting one of
the two half-samples for each stratum. The half-samples are selected according
to a published BRR replicate structure such that the samples are balanced,
fully orthogonal, and produce an unbiased variance estimator (McCarthy, 1966).
Replicate weights are then generated by multiplying the weights of units in the
selected half-sample by two and dropping units from the other half-sample.
Fay’s method of BRR imposes one small variation: rather than doubling the
weights of the selected half-sample and zero-weighting the other half-sample, a
small perturbation factor, α, is inserted such that the weights of the selected
half-sample are multiplied by (2-α) and the units of the other half-sample are
multiplied by α. This avoids small sample sizes that may arise from dropping
half of the sample. A perturbation factor of 0.5 is used in the example programs
on the synthetic data server.

For accurate replicate weights that fully account for sample design effects and
weighting adjustments, the replicate weights should be computed starting with
the base weight, which is the inverse of the probability of selection (Lemeshow,
1979; Chowdhury, 2013). Then, all post-stratification and raking adjustments
can be applied to each replicate separately.

The stratum and half-sample variables needed in order to construct replicate
weights are now included in the SSB. This allows users to construct replicate
weights based on the base SIPP weight, which is also included in the SSB.
The base SIPP weight is the inverse probability of selection for the sample unit
adjusted only for non-response and sampled units which turned out to represent
more than one household. Example programs for creating replicate weights with
the SSB and applying the replicate weights are provided on the synthetic data
server.
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6 Analytic Validity

Many potential SSB users are concerned about the analytic validity of this data
product and ask whether they will get the same answers using the synthetic
data as they would using the internal confidential data. How the synthetic
data compare to the confidential data typically depends on the research question
and the sample of individuals chosen. Due to the experimental nature of the
SSB and to faciliate further development of the synthesis process, Census will
conduct a validation exercise for any researcher who submits error-free programs
via the Cornell Virtual RDC Synthetic Data Server (SDS). After review of the
confidential results by authorized Census employees, disclosable results will be
released to the researcher for use in papers and publications. In this way,
researchers can have confidence that they will be able to identify any differences
in results due to synthetic data. At the same time, Census researchers can track
the performance of the SSB and make improvements to the modeling process
that enhance analytic validity.

7 Challenges and Future Research

Due to changing demands within the Census Bureau, there are currently no pro-
duction plans for a another release of the SSB, although releases could resume
in the future. Because it provides researchers with access to (synthetic) ad-
ministrative data without requiring special permission or use of a secure Census
computing environment, demand continues to grow. Many researchers request
additional SIPP variables. Unfortunately the synthesis process is long and
complicated enough that producing new versions has only been possible every
2-3 years. This has made meeting researcher demand for new variables and
new SIPP panels difficult.

In 2014, the SIPP will be conducted using a completely re-designed survey
instrument. Interviews will happen only once a year and the format of the data
will be quite different. While much of the content is similar, assimilating the
2014 panel into the GSF would be challenging. The SSB development team
currently expects that a separate GSF file would be required for SIPP panels
beginning in or after 2014.

Research has been done involving the creation of a job-level file for SSB re-
spondents that would link individuals to their employers over time and would
provide information such as an industry and firm size history, as well as earnings
by employer. SSB staff have created the basic structure of this person-employer
match file using the administrative earnings records and are now working on in-
tegrating SIPP job reports using name and address linking techniques. The
administrative data will add more historical firm-level information to the rela-
tively short employment history collected by the survey, whereas the SIPP will
add more detail about labor supply to the jobs captured by both the survey and
the administrative data. The release of an employee-employer match file will
also present challenges, of the same nature as family links but even more com-
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plicated because of the number of employers per individual. If a new version of
the SSB were to include such data, some summary measures such as total num-
ber of employers, industry of main employers, earnings of parents attached to
the records of their children will most likely be employed while Census continues
to research methods for protecting confidential linked data.

In spite of the challenges of creating synthetic data, users are increasingly
finding the SSB to be a useful product that allows access to data that have
previously been unavailable to non-government researchers. The continued de-
velopment and availability of this data product depends in large part on the
successful interaction between the government and the research community.
Continued statistical research on data synthesis methods coupled with feed-
back from researchers using the SSB will help the SSB maintain data privacy
protection while expanding and improving in both topical coverage and data
reliability.
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Figure 1: Privacy protection versus data utility trade-off
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Table 1: RMSE of the synthetic value of the nearest synthetic record: Total net
worth

p10 p25 p50 p75 p90 p95 p99

‐$                  ‐$                  17,000.00$         111,000.00$   300,000.00$   499,000.00$   1,134,000.00$   

Wealth 

Category n RMSE

<0 18000 35,600.00$        

0 240000 15,320.00$        

<p50 131000 75,560.00$        

<p75 203000 113,300.00$      

<p90 118000 173,400.00$      

<p95 38000 353,600.00$      

<p99 28500 463,100.00$      

>=p99 6500 5,586,000.00$   

RMSE Std. Dev. Ratio

521,000.00$   548,400.00$   0.95

Select Quantiles

Overall
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Table 2: RMSE of the synthetic value of the nearest synthetic record: 2010 total
FICA covered earnings

p10 p25 p50 p75 p90 p95 p99

2,859.00$        10,150.00$   26,420.00$         50,420.00$     83,950.00$   115,000.00$   246,800.00$  

Earnings 

Category n RMSE

0 282,000         58,750.00$        

<p10 30,500           59,720.00$        

<p25 45,500           82,170.00$        

<p50 76,000           80,760.00$        

<p75 76,000           123,300.00$      

<p90 45,500           169,200.00$      

<p95 15,000           296,100.00$      

<p99 12,000           594,200.00$      

>=p99 3,000             1,501,000.00$   

RMSE Std. Dev. Ratio

173,700.00$   78,430.00$   2.21

Select Quantiles

Overall
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Appendix A History of the SSB

In February 2001, a temporary U.S. Treasury Regulation went into effect that
allowed the U.S. Census Bureau to obtain administrative W-2 earnings data
from the Social Security Administration (SSA) and the Internal Revenue Ser-
vice (IRS) for certain survey respondents for the purpose of improving core
Census Bureau data products.10 One of the first primary goals was to cre-
ate a new public-use file that linked existing public-use survey data from the
Survey of Income and Program Participation with the W-2 data and adminis-
trative benefits data maintained by SSA. The creation of this new product was
a joint effort of Census, IRS, and SSA. All three agencies contributed data and
statistical expertise and Census and SSA provided funding.

In consultation with outside researchers and the Congressional Budget Office
(CBO), the Census Bureau created a standardized extract of variables from five
SIPP panels (1990, 1991, 1992, 1993, and 1996) and merged these extracts with
individual administrative earnings and benefits records. These extracts were
then combined to create the first version of the Gold Standard File in 2002.
The Census Bureau produced the first synthetic version of these data in late
fall 2003, and called it the SIPP/SSA/IRS Public Use File version 1.0. This
file was always viewed as preliminary and was never released to the public.
Three other preliminary public-use files were created: version 2.0 (fall 2004),
version 3.0 (December 2005), and version 3.1 (June 2006). The Census Bureau
completed work on version 4.0 in December 2006, and this version was released
to the public in the spring of 2007.

SSB v4.0 contained the following unsynthesized variables: gender, marital
status at time of wave 2, link to spouse (if married), type of OASDI benefit at
time of initial claim, and type of OASDI benefit in the year 2000. It did not
contain any indicator for SIPP panel, so all SIPP respondents were required
to have the same data present regardless of their source panel. This design
decision meant that large amounts of missing data had to be completed for
respondents in years when they were not surveyed. For example, total income
for SIPP respondents in the 1990 panel had to be imputed from mid-1992 onward
because the 1990 panel ended part-way through 1992. SSB v4.0 also contained
a weight meant to make the full set of respondents age 15 and older from all five
panels representative of the civilian, non-institutionalized national population
in the year 2000.

After extensive analytic validity testing by Census, SSA, and outside re-
searchers, some design changes were made and version 5.0 was created. This
version added the 2001 and 2004 SIPP panels, and an indicator for source panel
was included to reduce missing data imputation. The OASDI benefit variables
were expanded and SSI benefit variables were added. Version 5.0 had the same
set of unsynthesized variables as version 4.0 but did not contain the cross-panel
year 2000 weight. This weight had not been successful in re-producing popula-
tion statistics, and efforts to correct it were postponed. In order to speed the

10In February 2003, this temporary Treasury Regulation became final (see Federal Register,
Vol. 68, No. 13 Tuesday, January 21, 2003, Rules and Regulations, pp. 2691-5).
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release of new data, time-varying SIPP variables were left off when SSB version
5.0 was released to the public in December 2010. Version 5.1 was released in
May 2013. It used the same SIPP panels as version 5.0 but added a substantial
number of SIPP variables, in particular, ones which vary over time. Version 5.1
had fewer unsynthesized variables as only gender and spouse link were not syn-
thesized. Significant improvements were made to the modeling of the earnings
tax data by first cleaning the underlying data in order to prevent administrative
data error from skewing the synthesis. Version 5.1 was also the first to contain
geography (state at time of interview).

SSB version 6.0 was released in February 2015. Version 6.0 added the
1984 and 2008 SIPP panels while extending the years of administrative record
availability. New SIPP variables were added including time series variables per-
taining to government program receipt and amounts. Additional information
on SSDI and SSI application submissions were pulled from the administrative
records. Finally, this version sought to improve fertility history variables by
reconciling child birthdays from administrative data with the self-reported birth-
days provided by mothers in the SIPP. Version 6.02 also altered the naming
convention for monthly SIPP variables by changing the time identifier from cal-
endar year and month to month number since start of panel. For example, the
first interview of the 1996 panel was given in April 1996 with four months ret-
rospective extending back to December 1995. So, April 1996 would correspond
to variable 19964 in Version 6.0 and variable 5 in Version 6.02.

Version 7.0 is the most recent release of the SSB. The SIPP panels are
the same while the administrative record coverage extends through 2014. The
creation process has been altered in several ways. First, all variables are now
synthesized as is the missing data pattern. Second, the process of producing
the SSB from the GSF has changed. We now begin by creating four synthetic
files from a ”snapshot” of the internal Gold Standard File. This snapshot
contains all the variables which will be featured in the SSB. With missing
values included in the synthetic files, users are now granted more freedom to
choose how to address missing values.

The naming convention for monthly SIPP variables has also changed again.
Such variables are now defined by the year number within SIPP panel and cal-
endar month. Using the previous example for the 1996 SIPP panel, calendar
year 1 is 1995 since the earliest observations correspond to December of 1995;
therefore, a variable representing April 1996 would correspond to variable 2 4.
Several variables from the previous version have been updated while some new
variables have been added. For example, the available categories for the indus-
try and occupation variables have been expanded while the variables themselves
are now time series (by wave). The variable indicating state of residence dur-
ing the SIPP is now dis-aggregated rather than grouping some states together
for some years. New variables include respondent birthdate information from
the SIPP, date of filing for SSDI, birth years of a respondent’s first child and
last child, and the stratum and half-sample variables. The SSB v7.0 codebook
contains the full list and descriptions of variables.
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